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erties of the electron gas are responsible for the existence of the concept of ‘‘electrons” and ‘‘holes” in a
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� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Conventionally, the spin transport in a conductor is described by
themodel of spin-up/spin-downbands [1]. Thismodel assumes that
all electrons of an electron gas can be divided into two independent
groups: a group of electronswith the ‘‘spin-up” spin projections and
a group of electrons with the ‘‘spin-down” spin projections. It was
assumed that there is no exchange of electrons between these
groups or the exchange is slow. Therefore, each group of electrons
has its own thermo-equilibrium and it is possible to assign different
Fermi energies and chemical potentials to each group. Because of
the different transport of electrons of ‘‘spin-up” and ‘‘spin-down”
spin projections, an electrical current can transport the spin.

There are several unclear assumptions of this model. Firstly, the
reason is unclear why there is no electron exchange between
groups of electrons of ‘‘spin-up” and ‘‘spin-down” spin projections
and why these groups of electrons are thermo isolated. Secondly, it
is also unclear why spin-up/spin-down direction is special and
why not instead the electrons of the spin-left/spin-right or any
other spin projections should be thermo isolated.

Additionally, in the model of spin-up/spin-down bands the spin
transport is described by the Helmholtz equitation [1], which sim-
plifies the spin transport only to a simple diffusion of particles.
Such an over-simplified description ignores several important
facts. The Helmholtz equitation describes the diffusion of the spins
without any accompanied diffusion of the charge. This is the case
when the diffusion of the spin-polarized electrons in one direction
is always exactly equal to the diffusion of spin-unpolarized
electrons in the opposite direction. This condition contradicts with
some experimental facts [2,3]. In the vicinity of an interface the
charge is accumulated along spin diffusion [4]. The measurements
of this charge accumulation are often used to estimate the magni-
tude of a spin current. This effect is called the spin detection [2,3].
It should be noted that the problem of the spin detection can be
resolved by modifying the model of spin-up/spin-down bands. In
Refs. [5–7] it was assumed that the conductivity of electrons of
the spin-up and spin-down bands may be different. In this case
the spin detection effect can be described.

Another over-simplified assumption of the model of Ref. [1] is
the assumption that all conduction electrons have the same spin-
transport properties. This is not correct. The spin-transport proper-
ties of electrons with energy higher and lower than the Fermi
energy EF are substantially different. For example, in a n-type semi-
conductor, where the energy of conduction electrons is higher than
EF, the direction of the spin transport is along the movement of the
electrons. In contrast, in a p-type semiconductor, in which the
energy of conduction electrons is lower than EF, the spin transport
is in the opposite direction along the movement of the holes. Such
significant difference of the spin-transport for electrons of different
energies could be understood from the different energy distribu-
tions of the spin-polarized and spin-unpolarized electrons in an
equilibrium.

The equilibrium distribution of number of electrons in an elec-
tron gas (the Fermi-Dirac distribution) and the individual equilib-
rium distributions of spin-polarized and spin-unpolarized
electrons with respect to the electron energy is quickly established
and sustained because of frequent scatterings between conduction
electrons. When the total spin of the all scattered conduction elec-
trons is conserved, the scattering is called the spin-independent
scattering and it is the major scattering event in the electron gas
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[8]. Even though the total spin of all scattered electrons is con-
served after a spin-independent scattering, the spin of each indi-
vidual scattered electron is rotated. The properties of the spin-
independent scatterings and their influence on spin properties of
the electron gas have been studied in Ref. [8]. Despite of the fre-
quent spin rotations after scatterings, still electrons of an electron
gas can be divided into two groups of spin-polarized and spin-
unpolarized electrons, because the spin-independent scatterings
do not change the number of electrons in each group [8]. In the
group of spin-polarized electrons, all electron spins are directed
in one direction. In the group of spin-unpolarized electrons, the
spins are equally distributed in all directions. That means that for
any chosen direction there is an equal amount of ‘‘spin-up” and
‘‘spin-down” electrons. It is important that the latter condition is
valid for any chosen direction. Therefore, the time-inverse symme-
try is not broken for the group of spin-unpolarized electrons.

In contrast, in the model of spin-up/spin-down bands the time-
inverse symmetry is broken even for the group of spin-unpolarized
electrons, which is an incorrect result of this model. This fact is
explained as follows. The main assumption of the model of spin-
up/spin-down bands is that the transports of electrons of spin-up
and spin-down projections are independent. Since the spin-up
and spin-down electrons have different transport properties, they
can be distinguished by their spin-down/spin-up projection along
one fixed axis. The group of spin-unpolarized electrons consists
of an equal amount of spin-up and spin-down electrons. Still one
fixed axis can be distinguished in this group. That means the
time-inverse symmetry is broken even for the group of the spin-
unpolarized electrons. This is an incorrect conclusion of the model
of spin-up/spin-down bands. The total spin of the group of spin-
polarized electrons is zero. Therefore, the time inverse-symmetry
of this group should not be broken, there should be no any distin-
guished direction for this group and all directions should be abso-
lutely equal. For example, in a ferromagnetic metal the time-
inverse symmetry of the group of spin-unpolarized conduction
electrons is not broken along metal magnetization direction. It is
broken only for the group of the spin-polarized electrons. It should
be noticed that the model of the spin-up/spin-down bands [1] and
the model of Ref. [8] give the same description of the electron gas,
when there is no spin or/and charge currents. There are only differ-
ences in the description of the spin/charge transport.

In this paper the description of the spin and the charge trans-
port in electron gas includes the following important facts. The
description is based on results of the model of Ref. [8], which cor-
rectly describe the fact that the total spin of the group of the spin-
unpolarized electrons is zero and the time-inverse symmetry is not
broken for this group of electrons. Another fact is that the spin-
polarized and spin-unpolarized electrons have different energy
distributions and this difference influences the transport. The third
fact is that influence of different transport mechanisms on the spin
transport may be substantially different and the contribution of
each transport mechanism to the spin transport should be
described separately.

This paper is organized as follows. In Chapter 2 the spin/charge
transport equations are obtained from the continuity equations.
The obtained spin/charge transport equations contain 5 unknown
parameters: 4 different conductivities and the spin life time. In
Chapters 3, the Boltzmann transport equations are solved in order
to calculate these 4 conductivities for the case of the spin and
charge transport in the bulk of a conductor with a low density of
defects. In Chapter 4, the properties of the conductivities are ana-
lyzed for transport in the bulk of a high-conductivity conductor.
The influences of the defects and the interfaces on the conductivi-
ties are discussed in Chapter 5. In Chapter 6 the spin-related fea-
tures of the ‘‘electrons” and ‘‘holes” in a metal and a
semiconductor are described.
2. Transport equations

The quantum–mechanical description of the electron transport
is based on the following facts. The delocalized (conduction) elec-
trons of the electron gas occupy quantum states, the properties of
these quantum states and the electron scatterings between these
states determine the electron transport. Each quantum state is dis-
tinguished by the direction of its wavevector in the Brillouin zone,
its energy and its spatial symmetry. Due to the Pauli excursion
principle, each quantum state can be occupied maximum by two
electrons of opposite spins. A quantum state is filled either by no
electrons or one electron or two electrons of opposite spins.

As was mentioned in the introduction, all delocalized (conduc-
tion) electrons of the electron gas can be divided into two groups of
the spin-polarized and spin-unpolarized electrons. A state, which is
occupied by two electrons of opposite spins, has zero total spin. We
defined such state as the full-filled state. All full-filled states belong
to the group of spin-unpolarized electrons, because of their zero
spin. A quantum state, which is occupied only by one electron,
has spin ½. A part of the half-occupied states belongs to the group
of spin-polarized electrons and another part belongs to the group
of spin-unpolarized electrons. The important fact is that the
time-inverse symmetry is not broken for the group of the spin-
unpolarized electrons. It means that the total spin of this group
is zero and the projection of the total spin on any axis is zero as
well. It is only possible when the spin directions of the states,
which are filled only by one electron, are equally distributed in
all directions. As was shown in Ref. [8] the frequent spin-
independent scatterings make spins equally distributed in all
directions for electrons of the group of spin-unpolarized electron
and the total spin of this group equal to zero. In the contrast, the
spins of all electrons of the group of spin-polarized electrons are
directed in one direction. It has been proven in Ref. [8] that the
number of electrons in each group is conserved after a spin-
independent scattering. It is the reason why it is possible to calcu-
late individually the electron transport for each group of spin-
polarized and spin-unpolarized electrons.

The spin polarization sp of the electron gas defines the ratio of
the number of the electrons in the group of spin-polarized elec-
trons to the total number nspin of states, which are occupied only
by one electron:
sp ¼ nTIA

nspin
¼ nTIA

nTIA þ nTIS
ð1Þ
where nTIA is the number spin-polarized electrons and nTIS is the
number of states in the group of spin-unpolarized electrons, which
are filled by one electron. The full-filled states, which are occupied
by two electrons of opposite spins, are not included into the defini-
tion of spin polarization (Eq. (1)). It is because the conversion
between the groups of spin-polarized and spin-unpolarized elec-
trons occurs only between states filled by one electron [8]. This fact
is explained as follows. The half-filled states of both groups of spin-
polarized and spin-unpolarized electrons have spin ½, but the spin
of a full-filled state is zero. The conversion between the groups of
spin-polarized and spin-unpolarized electrons, which is called the
spin pumping and the spin relaxation, occurs due to alignment (dis-
alignment) of electron spins along one direction (from one direc-
tion) [8]. When all spins are aligned along one direction, all
conduction electrons are spin-polarized. When all spins are fully
disaligned, all conduction electrons are spin-unpolarized. The spin
alignment or disalignment may occur only for states with a non-
zero spin. The spin conservation law limits from the direct conver-
sion of electrons of the full-filled states of zero spin into the group
of the spin-polarized electrons, where all states have spin ½. That is
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why the full-filled states are excluded from definition of the spin
polarization (1).

The numbers of electrons in each group of spin-polarized and
spin-unpolarized electrons depend on the electron energy. Nearly
all deep-energy states, which energy is substantially below the
Fermi energy, are occupied by two electrons and nearly all of them
are spin-unpolarized. The states of energy substantially higher the
Fermi energy are either not occupied or occupied only by one elec-
tron. The energy distributions of electrons in each group can be cal-
culated using the Fermi-Dirac statistics and the features of the
spin-independent scatterings [8]. Fig. 1 shows the energy distribu-
tions of full-filled states, half-filled states, which belong to group of
spin-polarized electrons, and half-filled states, which belong to
group of spin-polarized electrons. The half-filled states of both
groups are mainly distributed in the vicinity of the Fermi energy
in the region ±3 kT. As it is shown in Chapter 3, the shape of the
energy distributions of Fig. 1 mainly defines the properties of the
charge and spin transport in an electron gas.

The energy distributions are different for spin-polarized and
spin-unpolarized electrons because of the different scattering
probabilities of the spin-polarized and spin-unpolarized electrons.
This fact can be understood as follows. In the case when a state is
already occupied by one electron, it is only possible for another
electron to be scattered into this state only if its spin direction is
opposite. For example, if a state is already occupied by a ‘‘spin-
up” electron, only a ‘‘spin-down” electron can be scattered into
the unoccupied place of this quantum state. The spin of the scat-
tered electron should be exactly opposite to the spin of the elec-
tron, which is already occupying the state. In the group of the
spin-polarized electrons, all electrons have the spins in one direc-
tion. Therefore, there are no scatterings between states occupied
by spin-polarized electrons. In the group of spin-polarized elec-
trons, the spins are distributed equally in all directions. Therefore,
there is a probability between 0 and 1 that a spin-unpolarized elec-
tron is scattered into a state occupied either by spin-polarized elec-
tron or by another spin-unpolarized electron. A full-filled state,
which is occupied by two electrons, has zero spin and no defined
spin direction. Therefore, electrons of this state have no spin limi-
tations for a scattering.

The definition of the spin polarization (Eq. (1)) includes the total
number of the half-filled states nspin. This parameter is used in the
transport equations and it should be calculated from material
parameters. The nspin can be calculated by integrating the distribu-
tions of Fig. 1 with the corresponding density of states of a conduc-
tor. For example, in a metal, for which density of states is
simplified to be a constant in the vicinity of the Fermi energy,
nspin is can be calculated as [8]:

nspin ¼ D � kT � ð1:14463þ 0:26055 � spÞ ð2Þ
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Fig. 1. Probability that a quantum state in electron gas is occupied by an electron fro
electrons (black line) or the state is occupied by two electrons of opposite spins (blue l
references to colour in this figure legend, the reader is referred to the web version of th
where D is the density of states at the Fermi energy, k is the Boltz-
mann constant and T is the temperature. It should be noticed that
nspin only slightly depends on the spin polarization sp. It decreases
by about 20% as the spin polarization increases from 0 to 100%. In
contrast, nspin may significantly depend on a charge accumulation.
For example, in the case of a non-degenerate n-semiconductor the
nspin increases exponentially with a linear increase of the Fermi
energy. In a metal it may be assumed that nspin only weakly depends
on the charge accumulation.

The spin and charge distributions in samples of different
geometries can be calculated from the spin and charge transport
equations. The spin and charge transport equations are a set of
two differential equations with two variables: the chemical poten-
tial l and the spin polarization sp. The transport equations can be
derived from the continuity equations for the spin and the charge.
The continuity equations describe the conservation laws for the
spin and the charge. They require that the amount of spin and
charge at each point may change only when either electrons are
converted between groups of spin-polarized and spin-
unpolarized groups or when electrons defuse from a point to a
point.

Electrons can be converted from the group of the spin-polarized
electrons into the group of the spin-unpolarized electrons because
of the spin relaxation. For example, the spin relaxation occurs
when each electron has a slightly different precession frequency.
Then, during a precession the spins of spin-polarized electrons dis-
align from one direction. As result, some of them are converted
into the group of spin-unpolarized electrons by scatterings [8].
Since the spin relaxation describes a process of disalignment of
the spin-polarized electrons from one direction, the rate of the spin
relaxation is always proportional to the number of the spin-
polarized electrons.

Electrons can be converted back from the group of the spin-
unpolarized electrons into the group of the spin-polarized elec-
trons because of the spin pumping. For example, the spin pumping
occurs when a magnetic field applied to the electron gas [8]. In this
case the spins of electrons align along the magnetic field due to the
damping of the spin-precession. As result, some of spin-
unpolarized electrons are converted into the group of spin-
polarized electrons by scatterings [8]. Since the spin pumping
describes a process of alignment of the spin-unpolarized electrons
into one direction, the rate of the spin pumping is proportional to
the number of spin-unpolarized electrons of half-filled states. The
spin pumping by illumination of a semiconductor by circular-
polarized light is an exception. In this case the spin is transformed
from a photon to an electron and the electrons from a full-filled
state can be directly converted into the group of the spin-
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polarized electrons. Spin pumping by circular-polarized light is a
more complex process and it will not be described in this paper.

Thus, due to the spin relaxation and the spin pumping, the
change of the number of the half-field states in the groups of the
spin-polarized and the spin unpolarized electrons is calculated as:

@nTIA

@t
¼ � @nTIS

@t
¼ � nTIA

sspin
þ nTIS

spump
ð3Þ

where sspin is the spin relaxation time and spump is the spin pumping
time. It should be noted that both sspin and spump may slightly
depend on the charge accumulation and the spin polarization of
the electron gas.

Substituting Eq. (1) into Eq. (3) gives

@nTIA

@t
¼ nspin

1� sp
spump

� sp
sspin

� �
ð4Þ

In equilibrium the numbers of the spin-polarized and spin-
unpolarized electrons are consta. Therefore, the spin polarization
sp0 of the equilibrium can be calculated from the condition:

@nTIA

@t
¼ nspin

1� sp0

spump
� sp0

sspin

� �
¼ 0 ð5Þ

which gives

spump ¼ sspin
1� sp0

sp0
ð6Þ

Substituting Eq. (6) into Eq. (4) gives the conversion rate
between spin-polarized and spin-unpolarized electrons as

@nTIA

@t
¼ � @nTIS

@t
¼ nspin

sspin
sp0

1� sp
1� sp0

� sp
� �

ð7Þ

Next, we calculate the spin and charge currents, which flows
along the gradients of the chemical potential l and the spin polar-
ization sp. As was mentioned above, the model of spin-up/spin-
down bands incorrectly assumes that there are two independent
chemical potentials for spin-up and spin-down electron bands,
there are two independent energy distributions for spin-up and
spin-down electrons and there could be two independent currents
for spin-up and spin-down electrons [1]. It is an incorrect assump-
tion because the frequent electron scatterings quickly mix up all
electrons of all possible spin polarizations ensuring the existence
of only one energy distribution for all electrons of different spin
distributions. For this reason the spin-polarized and spin-
unpolarized electrons always have the same Fermi energy and
the same chemical potential l. There are a few exceptions, which
are discussed in Chapter 5.

Even though spin-polarized and spin-unpolarized electrons
have the same chemical potential, they diffuse independently
along the gradient of the chemical potential l and the gradient
of the spin polarization sp, because of their different conductivities.

The current of the spin-polarized ~jTIA and current of spin-

unpolarized electrons~jTIS can be expressed as

~jTIA ¼ 1
q ðrl;TIA � rlþ rsp;TIA � kT � rspÞ

~jTIS ¼ 1
q ðrl;TIS � rlþ rsp;TIS � kT � rspÞ

ð8Þ

where q is the charge of an electron. The conductivities
rl;TIA; rsp;TIA; rl;TIS; rsp;TIS can be calculated by solving the Boltz-
mann transport equations (See next chapter). The currents flowing
along rl are called the drift currents and the currents flowing
along rsp are called the diffusion currents [5].

When the spin-polarized electrons defuse, they transport the
spin and the charge. In contrast, the spin-unpolarized electrons
only transport the charge. Therefore, the spin current ~jspin and

charge current~jch arg e can be calculated as

~jcharge ¼~jTIA þ~jTIS ¼ 1
q ðrcharge � rlþ rdetection � sp � kT � rspÞ

~jspin ¼~jTIA ¼ 1
q ðrinjection � sp � rlþ rspin � kT � rspÞ

ð9Þ

where the charge, spin, detection and injection conductivities are
defined as

rch arg e ¼ rl;TIS þ rl;TIA rdet ection ¼ ðrsp;TIS þ rsp;TIAÞ=sp
rinjection ¼ rl;TIA=sp rspin ¼ rsp;TIA

ð10Þ

The charge conductivity rch arg e is the conventional conductivity
of the metal, which describes a charge current flow along a gradi-
ent of the chemical potential (the Ohm’s law). The spin-diffusion
conductivity rspin describes the spin diffusion along a gradient of
the spin polarization. The injection conductivity rinjection describes
the spin current, which flows along an electrical field. It defines a
spin polarization of an electrical current, which is always smaller
or equal to the spin polarization of the electron gas sp. When
rinjection is not zero, an electrical current transports a spin accumu-
lation from one spatial point to another spatial point. In the case
when the spin is transported from one material to another by an
electrical current, the effect is called the spin injection [9–16].
The detection conductivity rdetection describes charge diffusion
along a gradient of the spin accumulation. It causes a charge accu-
mulation along the spin diffusion, which can be electrically
detected. Therefore, it makes possible an electrical detection of a
spin diffusion or a spin current. This effect is called the spin detec-
tion [2–4]. It should be noted that the multiplier sp is introduced in
front of rdetection and rinjection based on the requirement of the same
time-inverse symmetry of each term of Eq. (9). The conductivities
rch arg e; rspin rinjection and rdetection generally depend on the spin
polarization sp of the electron gas and a charge accumulation.

The continuity equations for the charge read:

r �~jch arg e ¼ q � @n
@t

ð11Þ

where~jch arg e is the charge current and n is the total number of elec-
trons. In a static case, at any special point the number of electrons
does not change @n

@t ¼ 0.
Only electrons of the group of spin-polarized electrons can

transport the spin. Therefore, the continuity equations for the spins
read:

r �~jspin ¼ q � @nTIA

@t
ð12Þ

where~jspin is the spin current.
Substituting Eqs. (7) and (9) into Eqs. (11) and (12), the Spin/

Charge Transport Equations are obtained as

r � ðrcharge � rlþ rdetection � kT � sp � rspÞ ¼ 0

r � ðrinjection � sp � rlþ rspin � kT � rspÞ ¼ q2 nspin
sspin

sp� 1�sp
1�sp0

sp0

� �
ð13Þ

The transport Eq. (13) are a set of non-linear differential equa-
tions, which in general should be solved numerically. However, in
some cases it is possible to solve them analytically. In a simple case
of a spin diffusion in the bulk of a non-magnetic metal, in which
rl ¼ 0 rdetection ¼ 0 sp0 ¼ 0 the transport Eq. (13) are simplified
to

r � ðrspin � kT � rspÞ ¼ q2 � sp nspin

sspin
ð14Þ
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In the case when rspin does not depend on sp, Eq. (14) can be
simplified to the Helmholtz equation

r2sp ¼ sp

k2spin
ð15Þ

where the spin diffusion length is calculated from Eq. (14) as

kspin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rspin � kT � sspin

nspin � q2

s
ð16Þ

The obtained spin and charge transport equations (Eq. (13)) are
important to calculate the distributions of the spin/charge accumu-
lations and the spin/ charge currents in different geometries. In a
general case, these equations are non-linear and they should be
solved numerically. When it is required, the transport equations
(Eq. (13)) may be solved together with the Landau-Lifshitz-Gilbert
equation [17,18].

3. A solution of Boltzmann transport equations for the band
current

The goal of solving the Boltzmann Transport Equations in this
manuscript is to calculate the charge rch arg e; spin-diffusion rspin;

detection rdetection and injection rinjection conductivities, which are
used in the Spin/Charge Transport Equations (Eq. (13)). The Boltz-
mann equations describe a temporal evolution of the distribution
function Fð~r;~p; tÞ. The distribution function Fð~r;~p; tÞ describes the
probability to find an electron at a point~r with pulse ~p at time t.

We have modified the Boltzmann Transport Equations in order
to include several facts, which are essential for the description of
the spin and charge transport. The first fact is that the spin-
polarized and spin-unpolarized electrons contribute to the trans-
port differently. The reason for this is the different energy distribu-
tions of spin-polarized and spin-unpolarized electrons and
electrons of the full-filled states (See Fig. 1). In order to describe
this fact, it necessary to use 3 distribution functions instead of
one. We used individual distribution functions FTIA for half-filled
states of the group spin-polarized electrons, FTIS for half-filled
states of the group spin-unpolarized electrons and Ffull for the
states, which are filled by two electrons of opposite spins. The sec-
ond fact, which was used in the modified Boltzmann transport
equations, is that there is a conversion between groups of spin-
polarized and spin-unpolarized electrons, which is induced by dif-
ferent spin relaxation or/and spin pumping mechanisms.

There are several known mechanisms of the electron transport
in a solid such as diffusive, ballistic, hopping transport and so on.
Here we have divided all transport mechanisms into two groups.
The transport related to the electron movement between scatter-
ings is assigned to one group and the transport related to the elec-
tron movement due to the scatterings is assigned to another group.
The first transport mechanism is defined as the band current. Only
conduction band electrons can contribute to this current. The sec-
ond transport mechanism is defined as the scattering current. Both
the localized and delocalized (conduction) electrons contribute to
this current. The path of each electron in the phase space can be
separated when it is scattered and when it moves between scatter-
ings. Therefore, the contribution of the band current and the scat-
tering current to the electron transport should be treated in the
Boltzmann transport equation individually and separately.

Including all these facts, the modified Boltzmann transport
equation is given as

dFi

@t
¼ dFi

@t

� �
band

þ dFi

@t

� �
scattering

þ dFi

@t

� �
force

þ dFi

@t

� �
conversion

þ dFi

@t

� �
relaxation

þ dFi

@t

� �
torque

ð17Þ
where ‘‘i” labels the distribution functions for the group of spin-
polarized electrons as ‘‘TIA”, group of spin-unpolarized electrons

as ‘‘TIS” and electrons of full-filled states as ‘‘full”; ðdFi
@t Þband is the

term, which describes a change of the distribution function due to

the movement of electrons between scatterings; dFi
@t

� �
scattering

is the

term, which describes the changing of the distribution function

due to the movement of electrons due to a scattering; ðdFi
@t Þforce is

the force term, which describes the change of the distribution func-
tion due an external field (for example, an electrical field); the con-

version term ðdFi
@t Þconversion describes the electron conversion between

groups of spin-polarized and spin-unpolarized electrons, because of
the spin relaxation or the spin pumping; the relaxation term

ðdFi
@t Þrelaxation describes the relaxation of a distribution function to an

equilibrium distribution function due to the electron scatterings;

ðdFi
@t Þtorque is the spin-torque current term, which describes a change

the distribution function due to flow of a spin-torque current. The
spin-torque current flows when the spin direction of spin-
polarized electrons is different at different points of a sample [8].
It induces a torque on spins of the conduction electrons, which
forces the spins of different regions to align in the same direction.
The origins of the spin-torque current are the electron diffusion
and the spin-rotation due to the scatterings [8].

Except for some special cases, it is safe to assume that an exter-
nal perturbation (an applied electrical or magnetic field, a thermo
gradient, a gradient of spin accumulation and a spin–orbit effective
magnetic field) is sufficiently small so that under the perturbation
the distribution function only slightly changes from the distribu-
tion function in equilibrium. In this case the distribution function
can be represented as

Fi ¼ Fi;0 þ Fi;1 ð18Þ
where Fi,0 is the distribution function in an equilibrium and Fi,1
describes a small deviation from the equilibrium such that for any
point of the phase space the following condition is valid:

Fi;0 >> Fi;1 ð19Þ
It could be further assumed that the relaxation of the distribu-

tion function into the equilibrium is linearly proportional to a devi-
ation of the distribution function from the equilibrium. Then, the
relaxation term can be calculated as

dFi

@t

� �
relaxation

¼ � Fi � Fi;0

sk
¼ � Fi;1

sk
ð20Þ

where sk is the momentum relaxation time. The following explains
why sk is the same for both groups of spin-polarized and spin-
unpolarized electrons and electrons of the full-filled states. The
electrons are constantly scattered between the groups of spin-
polarized and spin-unpolarized electrons at a high rate. The elec-
trons of each group are not thermo isolated. Only an amount of
electrons in each group is conserved during frequent electron scat-
terings [8]. Because of mixing of electrons between the groups, the
electrons of all groups relax together toward equilibrium and sk
should be the same for all groups. The use of the relaxation term
in form of Eq. (20) is called the relaxation-time approximation.

In the following, the conversion term ðdFi
@t Þconversion is calculated.

The spin-polarized electrons are converted into the group of
spin-unpolarized electrons, because of the different mechanisms
of the spin relaxation. Each spin relaxation mechanism constantly
disaligns the spin of each electron of the group of the spin-
polarized electrons from the common spin direction of the group.
For example, each electron may have a slightly different precession
frequency in a magnetic field due to a slightly different the g-
factor. Independently on the spin relaxation mechanism, each elec-
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trons of the group of the spin-polarized electrons equally con-
tributes to the spin relaxation. For this reason it can be concluded
that the rate of the conversion between groups of spin-polarized
and spin-unpolarized electrons due to the spin relaxation is pro-
portional to the number of electrons in the group of spin-
polarized electrons:

dFTIS

@t

� �
conversion

¼ � dFTIA

@t

� �
conversion

¼ FTIA

sspin
ð21Þ

where sspin is the spin life time.
The spin-unpolarized electrons may be converted into the

group of spin-polarized electrons due to the different spin pump-
ing mechanisms. Each spin pumping mechanism constantly aligns
the spins of electrons of the group of the spin-unpolarized elec-
trons along one direction. For example, when a magnetic field is
applied to the spin-unpolarized electron gas, there is a spin preces-
sion around the magnetic field and a spin precession damping. The
spins of conduction electrons are aligned along the magnetic field
due to the Hilbert damping of the spin precession. The conversion
rate due to the spin pumping is linearly proportional to the number
of electrons in the group of spin-unpolarized electrons [8]:

dFTIA

@t

� �
conversion

¼ � dFTIS

@t

� �
conversion

¼ FTIS

spump
ð22Þ

where spump is the effective spin pump time. As was shown in Ref.
[8], spump is inversely proportional to the magnitude of the applied
magnetic field.

Combining Eqs. (21) and (22), the conversion term is given as

dFTIS

@t

� �
conversion

¼ � dFTIA

@t

� �
conversion

¼ FTIA

sspin
� FTIS

spump
ð23Þ

The integration of Eq. (23) over all states gives exactly Eq. (4). It

means that term dFi
@t

� �
conversion

describes a local conversion between

groups of spin- polarized and spin-unpolarized electrons due to a
local spin alignment or disalignment. It does not describe any
changes of the distribution function due to diffusion of electrons
from neighbor points in the phase space. All changes of the distri-
bution function due to the diffusion are describes by 3 terms:
dFi
@t

� �
band

, dFi
@t

� �
scattering

, dFi
@t

� �
torque

, which may add additional terms

into Eq. (23). For example, a flow of spin-torque current between
regions of different spin directions of spin accumulation induces
an addition spin relaxation [8].

In this manuscript we only calculate the band current. We
assume that the spin direction of the spin-polarized electrons is
the same over whole sample and there is no spin-torque-current:
dFi
@t

� �
torque

¼ 0. Also, in this manuscript we neglect the scattering

current dFi
@t

� �
scattering

� 0 and we calculate only the band current.

The band current is the major transport mechanism in the bulk
of a metal and a semiconductor. It is much more efficient than
the scattering current. However, in the vicinity of an interface or
in a metal with a substantial number of defects the band current
decreases and the contribution of the scattering might be essential.
Also, the scattering current may flow perpendicularly to the band
current. It happens in the case when there are spin-dependent
scatterings. The anomalous Hall effect and the Spin Hall effect
occur due to the spin-dependent scatterings and a scattering cur-
rent, which flows perpendicularly to the band current. The scatter-
ing current was calculated in Ref. [4].

The band current occurs because of the movement of electrons
between scatterings. In electron gas, the conduction electrons
move between scatterings at a high-speed in all directions. In equi-
librium, the numbers of electrons moving in any opposite direc-
tions are exactly the same. Therefore, there is no electron
current. When a voltage is applied to the conductor, the numbers
of electrons moving along and opposite to the electrical field
become slightly different. Therefore, the band current flows along
the electrical field and it transports the charge and the spin.

It is important to emphasize that not all conduction electrons
contribute to the band current. All conduction electrons can be
divided into two different types: running-wave and standing-
wave electrons. The standing-wave electrons do not contribute to
the band current. This fact is explained as follows. The effective
length of the conduction electrons is rather long (See Fig. 3). In a
semiconductor it can be as long as a hundred of nanometers. In
the case when an average distance between defects in a conductor
is comparable with the effective length of a conduction electron,
the electron may bounce back and forwards between defects. It
is similar to the case of a photon, which are bouncing between
walls of a resonator. When bouncing between defects, one elec-
tron, which is moving forward, is firmly fixed to the electron,
which is moving backward. These coupled electrons do not move
along crystal. They are fixed at position of defects. Importunately,
when an electrical field is applied, there is still one electron moving
forward and one electron moving backward. The electrical field
does not change the ratio of electrons moving in the opposite
directions for this type of electrons. Therefore, these electrons do
not contribute to the band current. These coupled electrons are
defined as the standing-wave electrons. The electrons, which can
move freely along crystal and which are not fixed to one position,
are defined as the running-wave electrons. Only they contribute to
the band current.

There are standing-wave electrons in conductors with defects,
in multilayers and in vicinity of the interface between two conduc-
tors [4]. The existence of the standing-wave electrons influences
significantly the spin and charge transport. For example, in the
vicinity of an interface there are more standing-wave electrons
and less running-wave electrons comparing to the bulk of the con-
ductor. As result, the conventional conductivity rch arg e decreases
near the interface. The detection rdetection and injection rinjection con-
ductivities experiences even larger changes. The values of both
conductivities are near zero in the bulk, but in the vicinity of inter-
face their values may increase substantially and their values may
become comparable to the value of the conventional conductivity
rch arg e. It is the reason why the spin detection, which is the effect
of charge accumulation along spin diffusion, only has been
observed at an interface, but not in the bulk of a conductor [2–
4]. It is also the reason why the spin transport by an electrical cur-
rent and the spin injection are more effective along or across an
interface than in the bulk of a conductor [4].

Below we will solve the Boltzmann transport equations only for
the case when there are no any standing-wave electrons. However,
in Chapter 4 we will discuss how the existence of the standing-
wave electrons influences the obtained results.

As was discussed above, in order to calculate the band current,
only two terms of the general Boltzmann transport equations have
to be used and Eq. (17) are simplified to:

dFi

@t

� �
band

� Fi;1

sk
¼ 0 ð24Þ

The solution of Eq. (24) (See Appendix A) is:

~jTIA ¼ � q�sk
3 � R DðEÞ � j~vj2 � rFTIA;0 � dE

~jTIS ¼ � q�sk
3 � R DðEÞ � j~vj2 � rFTIS;0 � dE

~jfull ¼ � q�sk
3 � R DðEÞ � j~vj2 � rFfull;0 � dE

ð25Þ

where ~jTIA; ~jTIS; ~jfull are the band currents of spin-polarized, spin-
unpolarized electrons and electrons of full-filled states, respec-
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Fig. 3. Mean-free path kmean of spin-polarized, spin-unpolarized electrons, electrons of full-filled states and states, which are not filled by any electrons in the bulk of a
conductor with defects. The average distance between defects is 1 lm. (a) spin polarization sp = 0.2; (b) spin polarization sp = 0.85. There are more standing-wave electrons
when kmean is longer.
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tively. FTIA;0; FTIS;0; Ffull;0 are equilibrium distribution functions of
corresponding groups of electrons.

All three currents transport the charge, but the spin is only

transported by the current of the spin-polarized electrons ~jTIA.

Therefore, the charge current~jch arg e and spin current~jspin can be cal-
culated as

~jch arg e ¼~jTIS þ~jfull þ~jTIA
~jspin ¼~jTIA

ð26Þ

There are only two independent variables: the chemical poten-
tial l and the gradient the spin polarization sp, which describe spe-
cial variation of the distribution function. Therefore, the gradients
of the distribution functions can be calculated as:

rFi;0 ¼ @Fi;0

@l
rlþ @Fi;0

@sp
rsp ð27Þ

Using Eqs. (27) and (25), the charge, injection, spin and detec-
tion conductivities are calculated from Eq. (26) (See Appendix B) as

rcharge ¼ rl;TIA þ rl;TIS þ rl;full

rinjection ¼ 1
sp � rl;TIA

rdetection ¼ 1
sp � ðrsp;TIA þ rsp;TIS þ rsp;fullÞ

rinjection ¼ rsp;TIA

ð28Þ

The conductivities at the right side of Eq. (28) are calculated as

rj ¼ q2 � sk
3

�
Z

DðEÞ � j~vj2 � rjðEÞ � dðE=kTÞ ð29Þ

where the script j denotes ‘‘l,TIA”, ‘‘l,TIS”, ‘‘l,full”, ‘‘sp,TIA”, ‘‘sp,
TIS”, ‘‘sp,full”. The rj(E) are defined as the state conductivities and
are calculated as

rl;TIAðEÞ¼�kT � @FTIA;0
@E rl;TISðEÞ¼�kT � @FTIS;0

@E rl;fullðEÞ¼�kT � @Ffull;0
@E

rsp;TIAðEÞ¼ @FTIA;0
@sp rsp;TISðEÞ¼ @FTIS;0

@sp rsp;fullðEÞ¼ @Ffull;0
@sp

ð30Þ
The definition of the unitless state conductivities (Eq. (30)) does

not include the density of state of a conductor. Therefore, common
properties of metals or semiconductors can by analyze using the
state conductivities.

The obtained conductivities (Eqs. (28)(30)) should be used in
the transport equations (Eq. (13)) in order to calculate the spin/
charge transport in different materials. The conductivities were
calculated for the case of the band current flowing in the bulk of
a conductor without defects. In this simple case the conductivities
are proportional to the derivatives of energy distributions of
spin-polarized and spin-unpolarized electrons (Fig. 1) with respect
to the energy and spin polarization (Eq. (30)).
4. Properties of charge/spin conductivities rcharge, rspin, rinjection,
and rdetection in the bulk of a high-conductivity conductor

Fig. 2 shows the calculated charge rcharge, injection rinjection,
detection rdetection and spin-diffusion rspin state conductivities
for the spin polarization of electron gas 20% and 85%. The charge
or ordinary conductivity rcharge (black line) significantly depends
on electron energy. The electrons at the Fermi energy are most
effective for the transport of the charge. The ordinary charge con-
ductivity for them is largest. Above and below the Fermi energy the
ordinary conductivity sharply decreases. For example, the contri-
bution to the ordinary conductivity of electrons at energies 5 kT
above/below the Fermi energy is near 50 times smaller than the
contribution of electrons at the Fermi energy. It is the primary rea-
son why the conductivity of a metal is much higher than the con-
ductivity of a semiconductor. In contrast to a metal, in a non-
degenerate semiconductor, there are no electrons at the Fermi
energy. Another property of the band current in the bulk of a high
conductivity conductor is that in this case the ordinary conductiv-
ity rcharge does not depend on the spin polarization sp of the elec-
tron gas.

The spin-diffusion conductivity rspin (blue line of Fig. 2)
describes the spin diffusion along a gradient of spin accumulation.
The spin conductivity rspin is larger than the ordinary charge con-
ductivityrcharge. Above and below the Fermi energy, these conduc-
tivities become near equal. The largest difference between them is
at the Fermi energy and it is larger for a larger spin polarization sp
of the electron gas. At spin polarization sp = 75%, the rspin can be
2.5 times larger than rcharge. The reason of the difference between
rspin and rcharge is a higher density of spin-polarized electrons at
the Fermi energy (See Fig. 1).

The injection conductivity rinjection (red line of Fig. 2) describes
the spin current, which flows along an electrical field. It also defines
the spin polarization of an electrical current. When an electrical
current flows from one region to another region, the spin accumu-
lation in one region increases and in another region it may
decreases. When two regions belong to different conductors, such
effect is called the spin injection. The polarity of the rinjection is dif-
ferent for electrons, energy of which is lower and higher than the
Fermi energy. This means that electrons of different energies carry
the spins in opposite directions. In a metal the electron density is
nearly constant at the Fermi energy. Therefore, amounts of elec-
trons, which carry the spin along an electrical current in the oppo-
site directions, are nearly equal. As result, the spin polarization of



-0.6

-0.3

0.0

0.3

0.6

EF-3kT EF EF+3kT

injection

detection

charge

spin

st
at

e 
co

nd
uc

tiv
ity

electron energy

spin polarization= 20%

-0.6

-0.3

0.0

0.3

0.6

EF-3kT EF+3kT

charge

spin

st
at

e 
co

nd
uc

tiv
ity

electron energy

injection

detection

spin polarization= 85%

EF

)b()a(
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electrical current in a metal is near zero and an electrical current in
a metal nearly does not transport the spin. Only due to a non-zero
gradient of the density of state at the Fermi energy in a metal, there
is a small difference of amounts of electrons bellow and above the
Fermi energy, the value of rinjection becomes non-zero and an elec-
trical current transports the spins in themetal. However, in the bulk
of a metal it is still very inefficient. It means that in a metal the spin
polarization of electrical current is always substantially smaller
than the spin polarization of the electron gas. In contrast, in a semi-
conductor the rinjection is large and it is near equal to the ordinary
charge conductivity rcharge (See the red and black lines of Fig. 2).
As result, in a semiconductor the spin polarization of an electrical
current is near equal to the spin polarization of the electron gas.

In n-type and p-type semiconductors the spin current flows in
opposite directionswith respect to the direction of an electrical cur-
rent. In a non-degenerate n-type semiconductor, the Fermi energy
is below the conduction band and all conduction electrons are at
energies above the Fermi energy. In this case, the rinjection is posi-
tive (See Fig. 2) and the spins is transported from a ‘‘�” to a ‘‘+” elec-
trode. It is similar to the transport of the spin by negatively-charged
particles in vacuum, when the spin and the negative charge are car-
ried in the same direction. In a non-degenerate p-type semiconduc-
tor, the Fermi energy is above the conduction band and all
conduction electrons are at energies below the Fermi energy. In this
case, the rinjection is negative (See Fig. 2) and the spins are trans-
ported from a ‘‘+” to a ‘‘�” electrode. It is similar to the transport
of the spin by positively-charged particles in vacuum, when the
spin and the positive charge are carried in the same direction.

The detection conductivity rdetection (green line of Fig. 2)
describes the diffusion of the charge along a gradient of the spin
accumulation. When spin-polarized electrons diffuse from a region
of a higher spin-accumulation to a region of a lower spin accumula-
tion, additionally there is a current of spin-unpolarized electrons,
which flows exactly in the opposite direction. When the opposite
currents of the spin-polarized and spin-unpolarized electrons are
not equal, the charge is accumulated along the spin-diffusion [4].
This charge accumulation can be measured electrically [2,3]. Since
an amount of the charge accumulation is proportional to spin diffu-
sion current, the value the spin diffusion current can be estimated
from such electrical measurements [2–4]. As can be seen from
Fig. 2, the rdetection equals to zero for all energies. This means that
in the bulk of a defect-free conductor there is always an exact bal-
ance between opposite currents of spin-polarized and spin-
unpolarized electrons.

5. The conductivities in a conductor with defects and multi-
layers

The above-described properties are only valid for the case of
transport in the bulk of a high-conductivity conductor without
defects and multi-layers, when the major transport mechanism is
the band current. This is only the case when the periodicity of
the crystal is not broken and all conduction electrons are
running-wave electrons. When the number of defects decreases,
the number of the standing-wave electrons increases. It affects
the electron transport. The band current still remains the major
transport mechanism, but its spin properties change significantly.
When the number of defects increases further, the scattering cur-
rent become dominated transport mechanism. The spin transport
properties of the scattering current are substantially different from
that of the band current [4]. In the following we discuss how the
existence of the standing-wave electrons influences the conductiv-
ities of Fig. 2. Also, we describe the features of the spin transport in
a conductor with a moderate number of the defects.

The mean-free path kmean is an important parameter, which
determines the number of the standing-wave electrons in a con-
ductor. The longer the effective length of electron is, the higher
the probability is for the electron to bounce between defects or
interfaces to form a standing-wave electron. Fig. 3 shows the mean
-free path kmean of the conduction electrons in the bulk of a con-
ductor with defects, which was calculated in Ref. [4]. The kmean sig-
nificantly increases for a full-filled states at energies EF-2 kT and
lower. Near the Fermi energy, all states have the same and rather
short kmean. The case of a large spin-polarization sp, when the kmean

of spin-polarized electrons is longer, is an exception. Intuitively,
the data of Fig. 3 can be understood as follows. Below the Fermi
energy almost all states are full-filled states, which have no unoc-
cupied places where an electron can be scattered into. There are
only a few of half-filled states, which have one unoccupied place.
The probability of an electron to be scattered from a full-filled
states is very low, because most of time a full-filled state is sur-
rounded by other full-filled states, into which an electron can not
be scattered. Rarely a half-filled state is nearby and a scattering
event may happen. Therefore, the life time of full-filled state is long
and the kmean is long as well. In contrast, a half-filled state is always
surrounded by full-filled states, from which an electron can be
scattered into the half-filled state with a high probability. There-
fore, both the life time and kmean are short for a half-filled state.
Near the Fermi energy, all states have enough possibilities for scat-
terings and kmean is short for all states, except the case of a high
spin polarization sp of electron gas. In this case almost all states
near the Fermi energy are occupied by spin-polarized electrons.
As was mentioned above, electrons can not be scattered between
states occupied by spin-polarized electrons. It makes the life time
and kmean of the spin-polarized electrons longer.

The existence of the standing-wave electrons affects all four
conductivities rcharge, rspin, rinjection and rdetection. Since the
standing-wave electrons do not participate in the band current,
both the ordinary charge conductivity rcharge and the spin-
diffusion conductivity rspin decrease, when the number of the
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standing-wave electrons becomes larger. Below we describe sev-
eral examples of such decrease [4]. The first example is the
decrease of ordinary conductivity rcharge of a conductor, when
the number of defect in the conductor becomes larger. When the
number of defects increases, there are more the standing-wave
electron and less electrons, which participate in the transport. As
result, the ordinary conductivity becomes smaller. The second
example is the electron transport through a contact between two
conductors. At the contact the crystal periodicity is broken. Since
crystal periodicity is responsible for the electron band structure,
the place of the broken periodicity is the origin of the electron
reflection and the formation of the standing-wave electrons. As
result, there is always a contact resistance between two different
metals even in the case when there is no energy barrier between
them. The third example is the dependence of the ordinary conduc-
tivity rcharge of a thin conductor on its thickness. Due to the elec-
tron reflection at a conductor/isolator interface, there are
standing-wave electrons in the vicinity of the conductor boundary
and the conductivity is smaller in this region. When the thickness
of the conductor decreases there is more contribution to the over-
all conductivity from the region in the vicinity of the boundary
than from the bulk of the conductor. As result, the conductivity
decreases. However, when the thickness becomes thinner than
the mean-free path kmean, the conductivity may become larger
again because the transport changes to the 2D type. Because of
the electron confinement, the electrons can not be scattered across
the interface and they move only in one direction. As result, the
number of standing-wave electrons decreases and the conductivi-
ties rcharge and rspin become larger.

Additionally to the reduction of the ordinary conductivity, there
is a drastic change of the properties of the spin transport due the
existence of the standing-wave electrons, which is explained as fol-
lows. As can be seen from Fig. 3, the number of the standing-wave
electrons significantly dependents on the electron energy. As con-
sequence, the spin properties of the conductivity may change sub-
stantially. For example, the detection conductivity rdetection may
become non-zero. As can be seen from Fig. 3, the mean-free path
kmean of full-filled states is rather long for energies below EF-2�kT.
Therefore, many of electrons of these states are standing-wave
electrons and they do not participate in the band current. The rea-
son, why the detection conductivity rdetection is zero in Fig. 2, is the
exact balance of the opposite flows of spin-polarized and spin-
polarized electrons along a gradient of spin accumulation. All elec-
trons of full-filled states are spin-unpolarized and many of them
becomes standing-wave electrons and do not participate in the
transport. Therefore, in a conductor with defects or in the vicinity
of an interface, more spin-unpolarized electrons and less spin-
polarized electrons become the standing-wave electrons. It breaks
the balance and the rdetection becomes non-zero. This is the reason
why the spin detection effect is only observed at a contact between
metals [2,3], but not in the bulk of a metal.

The injection conductivity rinjection may increase due to the
existence of the standing-wave electrons. As was explained above,
in an electrical current the electrons of energy above and below the
Fermi energy EF transport the spins in opposite directions. These
opposite spin currents nearly balance each other and the rinjection

becomes very small in the case of the transport in the bulk of a
metal without defects. This balance may be broken due to the exis-
tence of the standing-wave electrons. Only spin-polarized elec-
trons, which occupied the half-filled states, transport the spin. A
metal has almost the same amounts of half-filled states with ener-
gies above and below the Fermi energy EF (See Fig. 1). As result, the
opposite spin currents are nearly equal in the case when there are
no standing-wave electrons. However, this balance is broken when
the number of standing-wave electrons is not the same for ener-
gies above and below the Fermi energy EF [4]. It makes the rinjection
substantially larger and the spin transport along an electrical field
more efficient. Such an enlargement of rinjection is more profound
in the vicinity of an interface [4]. It has an important consequence.
Due to the enlargement of the rinjection at an interface, the spin
injection is more effective through a contact betweenmetals rather
than within a single metal. For this reason, the threshold current
for magnetization reversal by the spin-transfer torque in a mag-
netic junction [19,20] is smaller than the threshold current for a
current-induced domain movement [21]. In the first case the
spin-transfer torque is due to spin injection between metals [6],
when the spin injection is more effective. In the second case the
spin-transfer torque is due to the spin injection within one metal,
when the spin injection is less effective.

In a metal with a high density of defects and a high resistance or
in the vicinity of a high- resistance contact, the scattering current
may become a dominated transport mechanism. The spin transport
properties of the scattering current are substantially different from
those of the band current. For example, the ordinary charge con-
ductivity rcharge may significantly depend on the spin polarization
of the electron gas, which is a rare effect for the drift current. Both
the injection conductivity rinjection and the detection conductivity
rdetection are larger for a scattering current. All spin-dependent
effects are more profound for a scattering current [4].
6. The ‘‘electrons and the ‘‘holes

It is not only the spin transport, which are influenced by the
spin properties of electron gas, but the properties of ordinary con-
ductivity in a non-magnetic conductor significantly depend on the
spin features of electron gas. In this section it is shown that the
spin properties of the electron gas, which are described in Chapters
2–5, are responsible for the existence of the concept of ‘‘electrons”
and ‘‘holes” in a semiconductor and a metal.

The model of ‘‘electrons” and the ‘‘holes” in a semiconductor is a
very successful model, which describes properties of semiconduc-
tors and semiconductor devices. This model assumes that in a
semiconductor along negatively-charge particles, the ‘‘electrons”,
there are positively-charged particles, the ‘‘holes”. All experimental
facts well agree with this model. For example, the polarity of the
Hall voltage in a p-type semiconductor, where dominated carries
are the ‘‘holes”, is positive. The effect is the same as it should be
for a current of the positively-charged particles. However, it is
well-known that in a solid the spin and the charge are carried only
by negatively-charged electrons. All positive charges are inside of
atomic nuclears. The nuclear does not move along the crystal.
Therefore, the positive charge of nuclear does not contribute to
any charge and spin currents. Therefore, the ‘‘hole” is the property
of the electron gas, when negatively-charged electrons behave like
positively-charged particles.

It could be assumed that the ‘‘holes” are voids in the electron
gas or unfilled orbitals or some quasi-particles. These assumptions
are not correct for the following reasons. The properties of the
‘‘holes” are very similar to the properties of the ‘‘electrons”. Similar
to an ‘‘electrons”, the mean-free path kmean or the effective length
of a ‘‘hole” may reach hundreds of nanometers in a high-crystal-
quality semiconductor. Therefore, the effective length of the ‘‘hole”
may be equal to the size of thousands of orbitals and a ‘‘hole” can
not be related to only one orbital. Even though the mobility of the
‘‘holes” is slightly smaller than the mobility of the ‘‘electrons” in
most of semiconductors, there are semiconductors (for example,
PbTe, PbS, diamond), in which the hole mobility is larger than
the electron mobility. This suggests that the ‘‘holes” and the ‘‘elec-
trons” are very similar particles. The ‘‘hole” can not be a quasi par-
ticle, because the ‘‘hole” has the defined spin and magnetic
moment.
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Also, it is unclear, how to apply the model of ‘‘electrons” and the
‘‘holes” for a metal. The Hall voltage in a metal is significantly
smaller than in a semiconductor. This implies that in a metal there
are nearly-equal numbers of the ‘‘electrons” and the ‘‘holes”. The
‘‘electrons” and the ‘‘holes” have the Hall voltages of opposite
polarities, which nearly compensate each other. There are metals,
which have a positive or negative Hall voltage. Therefore, a metal
can be either ‘‘hole”-dominated or ‘‘electron”-dominated. It is
unclear whether the ‘‘electrons” and the ‘‘holes” are mixed in a
metal or they are separated. It is unclear whether the spins of
‘‘electrons” and the ‘‘holes” should be in the same direction or their
spin directions can be independent. It is unclear whether ‘‘elec-
trons” and the ‘‘holes” attracts each other to form an exciton as
they would a in a semiconductor.

In fact, both the ‘‘electrons” and the ‘‘holes” are absolutely iden-
tical particles. They both are half-filled states, in which one place is
occupied by an electron and another place is unoccupied. The only
difference between ‘‘electrons” and the ‘‘holes” is their electron
energy. The energy of an ‘‘electron” is above the Fermi energy EF
and the energy of a ‘‘hole” is below EF. Depending on the electron
energy, the properties of a half-filled state are substantially differ-
ent. As can be seen from Fig. 2 and Fig. B1 (Appendix B), in an elec-
trical current the ‘‘electrons”, whose energy > EF, transport the
charge and the spin from a ‘‘�” potential to a ‘‘+” potential similar
to a current of negative-charged particles in vacuum. In contrast,
the ‘‘holes”, whose energy < EF, transport the charge and the spin
in the opposite direction from a ‘‘+” potential to a ‘‘�” potential
similar to a current of positively-charged particles in vacuum. In
a metal there are almost equal amounts of ‘‘holes” and the ‘‘elec-
trons” and they transport spin in the opposite directions. As result,
the transport of the spin accumulation by an electric current is
ineffective in the bulk of a metal.

Additionally, a ‘‘hole” may be associated with a positive charge
and an ‘‘electron” may be associated with a negative charge. Fig. 4
explains this fact. In an equilibrium, the charge distribution in a
conductor is smooth and it equals zero at any special point. A
thermo-fluctuation may move an electron in space (for example,
from left to right). Then, at the right side there is a negative charge
of electron accumulation and at the left side there is a positive
charge of electron depletion.

Fig.4(a) explains why the ‘‘hole” is positively charged. At energy
lower than EF, a quantum state is filled either by one or by two
electrons (See Fig. 1). There are no empty states. Therefore, an elec-
tron may move only from a full-filled state to a half-filled state. As
result, in the region of electron depletion there is an additional
half-filled state and in the region of electron accumulation there
is an additional full-filled state. The effective length of the half-
filled state is significantly shorter than the effective length of the
full-filled state (See Fig. 3). Therefore, there is a spark-like
positively-charged region at the location of the half-filled state,
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Fig. 4. Charge distribution along crystal, when one electron moved aside from an equili
with a ‘‘hole”. Electron energy is lower than the Fermi energy E < EF (b) There are both
‘‘electron”. E > EF. In all cases position of a spark-like peak of charge accumulation/deple
which is defined as the ‘‘hole”. In contrast, the negatively-
charged region at the location of the full-filled state is broad, the
magnitude of charge accumulation is small and the region is nearly
unnoticeable. Additionally, because of the long effective length, the
full-filled state may be bound to a dopant or defect and may not
move. In this case only positively-charged half-filled state (the
‘‘hole”) moves along the crystal.

At an energy higher than EF (Fig. 4(c)), a quantum state is either
notfilled or filled only by one electron (See Fig. 1). Therefore, an elec-
tron may move only from a half-filled state to an empty state. As
result, in the region of electron depletion there is an additional
empty state and in the region of electron accumulation there is an
additional half-filled state. The effective length of the half-filled
state is significantly shorter than the effective length of the empty
state (See Fig. 3). There is a spark-like negatively-charged region
at the location of the half-filled state, which is defined as the ‘‘elec-
tron”. In contrast, the positively-charged region at the locationof the
empty state is broad and unnoticeable (Fig. 4(c)). Therefore, there is
a region of a negative charge at the location of the ‘‘electron”.

At electron energy near EF, all states have a short effective
length. Therefore, both the negatively and positively charged
regions are sharp (Fig. 4(b)). Summing up, at the location of a
half-filled state there is a sharp region of positive charge when
the electron energy is smaller than EF and the half-filled state is
called the ‘‘hole”. There is a sharp region of negative charge at
the location of a half-filled state when the electron energy is larger
than EF and the half-filled state is called the ‘‘electron”.

In a metal, the spin-polarized ‘‘electrons” and spin-polarized
‘‘holes” have the same spin-direction due to frequent electron scat-
terings between them. In contrast, in a semiconductor the spin-
polarized ‘‘electrons” and spin-polarized ‘‘holes” may have differ-
ent spin directions. In a semiconductor the ‘‘electrons” and ‘‘holes”
belong to different bands of different symmetries. The ‘‘electrons”
belong to the conduction band of the s-symmetry and the ‘‘holes”
belong to the valence band of the p-symmetry. Because of the dif-
ferent symmetries the scatterings between the ‘‘electrons” and
‘‘holes” are rare. For example, in GaAs an electron is scattered
between the conduction and valance bands each 1–30 ns. In com-
parison, an electron experiences a scattering between states of the
conduction band each 10–100 femtoseconds [22]. Because of rare
scatterings between bands, all conduction electrons may be
divided into two separated weakly-interacted groups: the elec-
trons of the conduction band (the ‘‘electrons”) and the electrons
of the valence band (the ‘‘holes”). The electrons of each group
may have their own thermo equilibrium, their own spin direction,
their own chemical potential and their own Fermi energy. Because
of this unique property of a semiconductor it is possible to fabri-
cate a semiconductor laser and a bipolar transistor.

It should be noticed that the same idea, which is used to sepa-
rate the ‘‘electrons” and ‘‘holes” in a semiconductor, has been
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incorrectly applied to separate all conduction electrons into the
groups of the spin-polarized and spin-unpolarized electrons [1].
Similar as electrons are divided into the ‘‘holes” and the ‘‘elec-
trons,” the model of the spin-up/spin-down bands incorrectly
assumes that it is possible to use the same method in order to
divide all electrons into the groups of spin-polarized and spin-
unpolarized electrons or electrons of spin-up and spin-down spin
projections. The division into the groups of ‘‘electrons” and ‘‘holes”
in a semiconductor is justified because of a rare exchange of elec-
trons between these groups. The reason, why it is possible to divide
electrons into the groups of spin-polarized and spin-unpolarized
electrons, is different. On the contrary, the division is possible
not because of the rare electron exchange, but because of the fre-
quent electron exchange between the groups of spin-polarized
and spin-unpolarized electrons. Because of the frequent electron
scatterings and the conservation of the time-inverse symmetry,
the number of electrons in each group and the distributions of spin
directions in each group do not change for a relatively-long time
[8]. There is only one thermo equilibrium for both groups of
spin-polarized and spin-unpolarized electrons. The introduction
of different chemical potentials and the Fermi energies for the
spin-polarized and spin-unpolarized electrons or electrons of
spin-up and spin-down spin projections has no physical meaning.

7. Conclusion

The spin and charge transport equations (Eq. (13)) were
derived. By solving these equations (for example, numerically),
the distributions of the spin/charge accumulations and the spin/
charge currents can be calculated in different geometries. The
transport equations include 4 different conductivities, which were
calculated by solving the Boltzmann transport equations. The con-
ductivities were calculated and studied for the case of the band
current flowing in the bulk of a conductor. In this case the conduc-
tivities are simply proportional to the derivatives of energy distri-
butions of spin-polarized and spin-unpolarized electrons (Fig. 1)
with respect to the energy and the spin polarization (Eq. (30)).

It was shown that the ‘‘electrons” and ‘‘holes” transport the spin
in opposite directions in an electrical drift current. Since in a metal
there are nearly equal amounts of ‘‘electrons” and ‘‘holes”, the spin
polarization of an electrical current in a metal is substantially
smaller than the spin polarization of an electron gas and the spin
transport is not effective in the bulk of metal.

It was shown that in the bulk of a conductor the diffusion of
spin-polarized electrons is exactly compensated by opposite diffu-
sion of spin-unpolarized electrons. As result, the charge is not
accumulated along the spin current and the spin detection effect
does not exist in the bulk of a conductor.

It was shown that the spin properties of the electron gas are
responsible for the existence of the concept of ‘‘electrons” and
‘‘holes” in a conductor. It was shown that the ‘‘electrons” and the
‘‘holes” in a semiconductor and a metal represent a same particle:
a half-filled quantum state. The half-filled state is a quantum state
of conduction electrons, which is occupied only by one electron,
and it has one unoccupied place. The only difference between an
‘‘electron” and a ‘‘hole” is their energy with respect to the Fermi
energy. The ‘‘hole” behaves similar to a positively-charged particle
in vacuum and the ‘‘electron” behaves similar to a negatively-
charged particle in vacuum. The direction, in which the spin and
the charge are carried in an electrical current, is along of move-
ment of positively-charged particles in vacuum in the case of a
‘‘hole” current. It is along of movement of negatively-charged par-
ticles in vacuum in the case of an ‘‘electron” current. Additionally,
it was shown that there is a narrow region of positive charge at
location of a ‘‘hole” and there is a narrow region of negative charge
at location of an ‘‘electron”.
Appendix A.

Below the Boltzmann transport equations (Eq. (24)) are solved
for the band current.

The band current occurs, because of the movement of band
electrons (delocalized conduction electrons) in space. The move-
ment of an electron literally means that if at time t the electron
is at point x, at time t + dt the electron will be at point xþ vx � dt;
where vx is the x-axis projection of the electron speed. The change
of the electron distribution function F(x) due to the movement of
the conduction electrons along the x-direction can be described as:

dFðxÞ ¼ Fðx� vx � dtÞ � FðxÞ ðA:1Þ
In the case of a short time interval dt, Eq. (A.1) can be simplified

as

@F
@t

¼ �vx � @F
@x

ðA:2Þ

Taking into the account that an electron can move not only in
the x-direction, but in any direction gives the band-current term
of the Boltzmann equation as

@F
@t

� �
band

¼ �~v � rF ðA:3Þ

Substituting Eq. (A.3) into the Boltzmann transport equations
Eq. (24) gives

� Fi;1

sk
�~v � rðFi;0 þ Fi;1Þ ¼ 0 ðA:4Þ

The solution of Eq. (A.4) using the condition (Eq. (19)) is

Fi;1 ¼ �sk �~v � rFi;0 ðA:5Þ
The current due to movement of one electron in volume V is

~jone el ¼ � q �~v
V

ðA:6Þ

where q is the charge of an electron
Integrating Eq. (A.6) over all states and using Eq. (A.5), the band

current can be calculated as

~ji ¼ q

ð2p�hÞ3
Z Z Z

~v � ðFi;0 þ Fi;1Þ �~dp

¼ q

ð2p�hÞ3
Z Z Z

~v � Fi;1 �~dp

¼ �skq
ð2p�hÞ3

�
Z Z Z

~v � ð~v � rFi;0Þ �~dp ðA:7Þ

In equilibrium there is no current, this can be described as:

q

ð2p�hÞ3
Z Z Z

~v � Fi;0 �~dp ¼ 0 ðA:8Þ

The condition (A.8) was used to simplify Eq. (A.7).
In the case of a transport in the bulk of an isotropic metal, Eq.

(A.7) can be further simplified. We define the angle h as the angle
between the electron movement direction and rFi;0. Then, the
number of electrons in each group of spin-polarized and spin-
unpolarized electrons can be calculated as

ni ¼ 1

ð2p�hÞ3
Z Z Z

Fi;0ðEÞ �~dp

¼
Z

dE � DðEÞ � Fi;0ðEÞ �
Z p

0
0:5 � sinðhÞ � dh

¼
Z

DðEÞ � Fi;0ðEÞ � dE ðA:9Þ

where D(E) is the density of the states.
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Similarly, the currents flowing along and perpendicularly to
rFi;0 are calculated from Eq. (A.7) as

ji;jj ¼ �skq � R DðEÞ � dE � R p0 0:5 � sinðhÞ � dh � j~vj � cosðhÞ

�ðj~vj � jrFi;0j � cosðhÞÞ ¼ � q�sk
3 � R DðEÞ � j~v j2 � jrFi;0jdE

ji;? ¼ �skq � R DðEÞ � dE � R p0 0:5 � sinðhÞ � dh � j~v j � sinðhÞ
�ðj~vj � jrFi;0j � cosðhÞÞ ¼ 0

ðA:10Þ

Therefore, the current flows only alongrFi;0 and from Eq. (A.10)
the total band current can be calculated as

~ji ¼ � q � sk
3

�
Z

DðEÞ � j~v j2 � rFi;0 � dE ðA:11Þ

The explicit expressions for the band current of spin -polarized

electrons ~jTIA, the band current of spin-unpolarized electrons ~jTIS
and the band current of electrons occupying the full-filled states
~jfull are

~jTIA ¼ � q�sk
3 � R DðEÞ � j~vj2 � rFTIA;0 � dE

~jTIS ¼ � q�sk
3 � R DðEÞ � j~v j2 � rFTIS;0 � dE

~jfull ¼ � q�sk
3 � R DðEÞ � j~vj2 � rFfull;0 � dE

ðA:12Þ

where FTIA;0; FTIS;0; Ffull;0 are equilibrium energy distributions of
spin-polarized, spin-unpolarized electrons and electrons filling
full-filled states, which are shown in Fig. 1.

It should be noted that simplification from Eq. (A.9) to Eq. (A.11)
is only possible, when all conduction electrons are running-wave
electrons. In the case of a transport, when there is a substantial
amount of standing-wave electrons (for example, in the vicinity
of an interface), the integration of Eq. (A.9) is more complex [4].

Appendix B.

In the following we calculate the charge rch arg e; spin-diffusion
rspin; detection rdetection and injection rinjection conductivities from
Eq. (25) using Eqs. (24), (27) and (9).

In order to simplify the solution and the analysis, two cases are
calculated separately. At first, the drift current flowing along an
electrical field is calculated. Next, the diffusion current flowing
along a gradient of spin polarization is calculated.

In the case when there is a spatial gradient of the chemical
potential l, the gradient of the distribution function can be calcu-
lated as

rFi;0 ¼ @Fi;0

@l
rl ðB:1Þ

Substituting Eqs. (B.1) into Eq. (25) gives

~jl;i ¼ rl � q � sk
3

�
Z

DðEÞ � j~v j2 � @Fi;0

@ð E
kTÞ

� dð E
kT

Þ ðB:2Þ

Comparison of Eq. (B.2) with a definition of the drift current of
Eq. (8) gives the conductivities of spin polarized electrons rl;TIA,
spin-unpolarized electrons rl;TIS and electrons of full-filled states
rl;full for the drift current as

rl;TIA ¼ q2 �sk
3 � R DðEÞ � j~vj2 � rl;TIAðEÞ � dð E

kTÞ
rl;TIS ¼ q2 �sk

3 � R DðEÞ � j~vj2 � rl;TISðEÞ � dð E
kTÞ

rl;full ¼ q2 �sk
3 � R DðEÞ � j~vj2 � rl;fullðEÞ � dð E

kTÞ
ðB:3Þ

where the state conductivities rl,TIA(E), rl,TIS(E), rl,full(E) are
defined as
rl;TIAðEÞ ¼ �kT @FTIA;0
@E rl;TISðEÞ ¼ �kT @FTIS;0

@E rl;fullðEÞ ¼ �kT @Ffull;0
@E

ðB:4Þ
All conductivities of Eq. (B.4), which describe a drift current, are

proportional to derivative of the energy distribution shown in
Fig. 1 with respect to the electron energy.

Fig. B.1(a) shows the calculated state conductivities ,rl,TIA(E),
rl,TIS(E), rl,full(E). The state conductivity rl,full(E) for a band cur-
rent of electrons of full-filled states is positive for all energies. This
means that the full-filled states are drifted from a ‘‘�” source
toward a ‘‘+” drain. It is similar to the movement of a negatively-
charged particle in an electrical field in vacuum. The state conduc-
tivities rl,TIA(E), rl,TIS(E) for a current of electrons of half-filled
states are positive for energies above the Fermi energy and they
are negative for energies below the Fermi energy. This means that
the drift direction of these states depends on their energy. The half-
filled states of energies above the Fermi energy are drifted from a
‘‘�” source toward a ‘‘+” drain. It is similar to the movement of a
negatively-charged particle in an electrical field in vacuum. How-
ever, the half-filled states of energies below the Fermi energy are
drifted in the opposite direction from a ‘‘+” source toward a ‘‘�”
drain. The drift becomes similar to the movement of a positively-
charged particle in an electrical field in vacuum.

Next, the second case is calculated when a diffusion current
flows along a gradient of spin accumulation. In this case there is
a spatial gradient of the spin polarization sp and the gradient of
the distribution function can be calculated as

rFi;0 ¼ @Fi;0

@sp
rsp ðB:5Þ

Substituting Eq. (B.5) into Eq. (25) gives

~jsp;i ¼ rsp � kT � q � sk
3

�
Z

DðEÞ � j~v j2 � @Fi;0

@sp
� dð E

kT
Þ ðB:6Þ

Comparison of Eq. (B.6) with a definition of the drift current of
Eq. (8) gives the conductivities of spin polarized electrons rsp;TIA,
spin-unpolarized electrons rsp;TIS and electrons of full-filled states
rsp;full for the diffusion current as

rsp;TIA ¼ q2 �sk
3 � R DðEÞ � j~vj2 � rsp;TIAðEÞ � dð E

kTÞ

rsp;TIS ¼ q2 �sk
3 � R DðEÞ � j~vj2 � rsp;TISðEÞ � dð E

kTÞ

rsp;full ¼ q2 �sk
3 � R DðEÞ � j~vj2 � rsp;fullðEÞ � dð E

kTÞ

ðB:7Þ

where the state conductivities rsp,TIA(E), rsp,TIS(E), rsp,full(E) are
defined as

rsp;TIAðEÞ ¼ @FTIA;0
@sp rsp;TISðEÞ ¼ @FTIS;0

@sp rsp;fullðEÞ ¼ @Ffull;a
@sp ðB:8Þ

All conductivities of Eq. (B.8), which describe a diffusion cur-
rent, are proportional to derivative of the energy distribution
shown in Fig. 1 with respect to the spin polarization sp.

Fig. B.1(b) shows the calculated state conductivities rsp,TIA(E),
rsp,TIS(E), rsp,full(E). The conductivity of the spin-polarized elec-
trons rsp,TIA(E) is positive. It describes the simple fact that the
spin-polarized electrons diffuse from a region of a higher spin
accumulation into a region of a smaller spin accumulations. The
conductivities of spin-unpolarized electrons rsp,TIS(E), rsp,full(E)
are negative. It means that the spin-unpolarized electrons diffuse
in the opposite direction.

The charge is transported by all currents of spin-polarized, spin-
unpolarized electrons and electrons of full-filled states, but the
spin is only transported by the spin-polarized electrons. Therefore,

the charge current~jch arg e and spin current~jspin can be calculated as
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Fig. B1. (a) State conductivities rl,TIA(E) (red line), rl,TIS(E) (black line), rl,full(E) (blue line) for a drift current, which flows along an applied electrical field. (b) State
conductivities rsp,TIA(E) (red line), rsp,TIS(E) (black line), rsp,full(E) (blue line) for a diffusion current, which flows along a gradient of spin accumulation. Spin polarization of
the electron gas is 20% in both cases. The calculated state conductivities are derivatives of the energy distributions of Fig. 1 with respect of energy and spin polarization. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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~jch arg e ¼~jl;TIS þ~jl;full þ~jl;TIA þ~jsp;TIS þ~jsp;full þ~jsp;TIA
~jspin ¼~jl;TIA þ~jsp;TIA

ðB:9Þ

Substituting Eqs. (B.3), (B.7) into Eq. (B.9) and comparing it with
Eq. (8), the charge, injection, spin-diffusion and detection conduc-
tivities are calculated as

rcharge ¼ rl;TIA þ rl;TIS þ rl;full

rinjection ¼ 1
sp � rl;TIA

rdetection ¼ 1
sp � ðrsp;TIA þ rsp;TIS þ rsp;fullÞ

rinjection ¼ rsp;TIA

ðB:10Þ
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