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The Kittel effect describes ferromagnetic resonance (FMR) under conditions where the bias mag-
netic field varies in response to the motion of the magnetization during one precession cycle. A
common case occurs in ferromagnetic thin films where the equilibrium magnetization lies in the
film plane. In this configuration, both the demagnetizing field and the magnetic field of spin–orbit
interaction are modulated during each precession period. These fields reach their maximum values
when the magnetization is tilted out of the plane and vanish when it lies entirely in-plane. The
Kittel effect modifies the Larmor frequency and gives rise to higher-order harmonics of the FMR
signal, particularly the second and third harmonics.. Main part finished in March 2025

Several parameters of ferromagnetic resonance (FMR)
are influenced by the Kittel effect. The most well-known
manifestation is the non-linear dependence of the Larmor
frequency on an external magnetic field applied along
the easy axis (i.e., in the in-plane direction). In general,
the Larmor frequency is linearly proportional to the to-
tal magnetic field, which is the sum of the internal and
external magnetic fields. Thus, increasing the external
magnetic field normally leads to a linear increase of Lar-
mor frequency. However, the Kittel effect causes this
increase to become faster and nonlinear.

The Kittel effect describes how the demagnetization
field and the effective field from spin-orbit interaction in-
fluence spin precession, leading to an increase in the pre-
cession frequency. When the external magnetic field be-
comes sufficiently large compared to these internal fields,
the influence of the Kittel effect becomes negligible and
eventually disappears.

Another important consequence of the Kittel effect is
the generation of second and third harmonics in the FMR
response. This occurs because the Kittel effect intro-
duces additional complexity into the magnetization mo-
tion, producing a nonlinear variation of the precession

FIG. 1. Precession geometry. The equilibrium magnetization
is perpendicular to the film (the z- direction). The external
magnetic field Hz is applied along the easy axis (the z- direc-
tion).

FIG. 2. Precession geometry. The equilibrium magnetization
is in-plane (the z- direction). The external magnetic field Hz

is applied along the easy axis (the z- direction). The spin
creates three types of the magnetic fields: (field 1: HM ): the
magnetic field along spin direction (field 2: Hdemag): Demag-
netization field directed along film normal (the y-axis); (field
3: Hso) Magnetic field of spin orbit interaction directed along
film normal (the y-axis) and opposite to Hdemag. All mag-
netic fields are modulated during precession Hdemag and Hso

become largest when the magnetization is directed toward the
film surface and vanish when magnetization is fully in-plane.

angle, making its temporal evolution more complex.

The Kittel effect can be modeled either by solving the
Landau-Lifshitz equation or via a quantum-mechanical
approach. Section 1 discusses the solution of the Landau-
Lifshitz equation as originally formulated by Kittel. This
model, while substantially simplified, provides a good ap-
proximation for calculating the Larmor frequency. Sec-
tion 2 presents a full solution of the Landau–Lifshitz
equations without approximations, which not only cap-
tures the modification of the Larmor frequency but also
explains the emergence of the second and third harmon-
ics.
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I. GEOMETRY OF THE EFFECT, FINAL
RESULTS, LANDAU- LIFSHITZ EQUATION FOR

THE EFFECT

A. conditions, assumptions, axis directions

(condition): The equilibrium magnetization is in-
plane. It is the case of a relatively thick ferromagnetic
field

(axes): The equilibrium magnetization is in the z-
direction (the in-plane direction). The interface normal
is in the y- direction (See Fig. 1).

B. Use of Two Unit Systems (SI and Gaussian)

To compare the obtained results with the classical Kit-
tel formula, the Gaussian unit system is used. In all other
cases, the SI unit system is employed, as it is more con-
venient for incorporating the effects of spin–orbit inter-
action and interfacial imperfections.

For the Kittel effect, the only difference between the
two unit systems lies in the definition of the dipolar mag-
netic field produced by the magnetization.

In the SI system, the dipolar magnetic field HM is
calculated as: HM = M , while in the Gaussian system,
it is calculated as HM = 4πM .

C. classical description: results

The Kittel effect describes the influence of the demag-
netization field and the field of the spin-orbit interaction
on the Larmor precession of the magnetization.

Kittel effect leads to several modifications of parame-
ters of the ferromagnetic resonance. The first modifica-
tion is the change of the Larmor frequency ωL, which is
described by the Kittel formula (see Eqs. 26 and 47) as
(Gaussian unit system):

ωL = γ ·
√
H(H + 4πM) (1)

where M is the magnetization, γ is the electron gy-
romagnetic ratio, H = Hext + Hint is the bias in-plane
magnetic field, along which the magnetization precession
occurs. H is the sum of the internal magnetic field Hint

and external in-plane magnetic field Hext.
The Kittel formula is valid only in case of the ideally

smooth interfaces of the ferromagnetic field and absence
of the influence of the spin- orbit interaction. For a re-
alistic surface having some roughness and experiencing
some spin- orbit interaction, the Larmor frequency is cal-
culated (See Eq. 81) as (SI unit system):

ωL =
γ

1 + kso
·
√
H(H +H0

ani

(1 + kso)

2
) (2)

where H0
ani is the anisotropy field in absence of an

external magnetic field and kso is the coefficient of the
spin-orbit interaction.
In absence of spin-orbit interaction or when the spin-

orbit interaction is isotropic (kso = 0), the Larmor fre-
quency is calculated (See Eq. 83 ) as (SI unit system):

ωL = γ ·
√
H(H +M · kdemag) (3)

where kdemag is the demagnetization coefficient. kdemag

equals to 1 for an ideally smooth interface of the ferro-
magnetic film and becomes smaller for a rougher inter-
face.
In the case of an ideally smooth interface of the fer-

romagnetic film (kdemag=1 ), the expression for the Lar-
mor frequency simplifies to the classical Kittel formula
(SI unit system):

ωL = γ ·
√

H(H +M) (4)

The second modification due to the Kittel effect is
the change of precession path from circular to ellipti-
cal. When the precession angle becomes smaller when
the magnetization is directed towards the film interface
than when it directed fully in the in-plane direction.
Ellipticity of precession trajectory can be calculated as

(See Eqs. 33 and 49) :

Ryx =

√
H

H +M
(5)

The ellipticity is defined as

Ryx = i · My

Mx
(6)

The third modification due to the Kittel effect is ap-
pearance of the 2nd and 3rd harmonics of the precession.
The precession dynamic, which includes the 2nd and

3rd harmonics, is described as

Mx = Mx,ω1 · ei·ωLt +Mx,ω3 · ei·3ωLt

My = My,ω1 · ei·ωLt +My,ω3 · ei·3ωLt

Mz = Mz0 +Mz,ω2 · ei·2ωLt
(7)

where similarly the Larmor frequency is calculated as
(Gaussian unit system)

ωL = γ ·
√
H(H + 4πM) (8)

Due to the modulation of the precession angle, the
magnetization component along the easy axis Mz is mod-
ulated at the second harmonic. The ratio of the magni-
tude of the second harmonic Mz,ω2 to the magnitude of
the first harmonic Mx,ω1 is calculated (See Eq. 88) as
follows (SI unit system)
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Mz,ω2 = −i
M2

x,ω1

2M

1

1 +
H

H0
ani

2

1 + kso

(9)

In absence of the interfacial spin- orbit interaction
kso = 0 and an ideally smooth interface (kdemag=1 ),
the ratio between components osculating with single and
double Larmor frequencies is calculated (See Eq. 51)
(Gaussian unit system) as

Mz,ω2 = −i
2π

H + 4πM
M2

x,ω1 (10)

In turn, this modulation of Mz generates precession
components at the third-harmonic frequency. The rela-
tionship between the amplitudes of the third harmonic
Mx,ω3 and first harmonic Mx,ω1 is given by the following
expression (See Eq. 90) (See Eq. 88) (SI unit system) as

Mx,ω3 = −i
M3

x,ω1

48 ·M2

1[
1 +

H

H0
ani

2

(1 + kso)

]2 (11)

In absence of the interfacial spin- orbit interaction
kso = 0 and an ideally smooth interface (kdemag=1 ),
the ratio between components osculating with single and
triple Larmor frequencies is calculated (See Eqs. 59)
(Gaussian unit system) as:

Mx,ω3 = −iπ
2

3

M3
x,ω1

[H+4πM ]]2
(12)

Similarly, the precession trajectory at the third har-
monic is elliptical. The relation between ellipticity of
precession trajectory between 1st harmonic Ryx,ω1 and
3rd harmonic Ryx,ω3 is (See Eq. 53):

Ryx,ω3 = i · My,ω3

Mx,ω3
=

Ryx,ω1

3
(13)

It is important to emphasize that the third harmonic
component increases rapidly with the growth of the pre-
cession angle. Specifically, the third harmonic is propor-
tional to the cube of the zero harmonic component.

D. Landau- Lifshitz equation for Kittel effect

(condition 1 for classical description): The ideal in-
terface, which creates the demagnetization field opposite
and exactly equal to the magnetic field of the magnetiza-
tion. In the unit, which used in paper:Hdemag,y = 4πMy

Hdemag,y = −4πMy (14)

(condition 2 for classical description): there is no mag-
netic field of spin-orbit interaction
The Landau-Lifshitz (LL) equation describes the dy-

namic of the magnetization precession, induced by total
magnetic field H, which includes the internal and external
magnetic fields, and the demagnetization field:

∂M⃗

∂t
= −γM⃗ × (H⃗ + H⃗demag) (15)

where γ is the electron gyromagnetic ratio.
Since the direction of the demagnetization field is along

the surface normal and there is no in-plane component
of the demagnetization field

⃗Hdemag =

 0
Hdemag,y

0

 (16)

and the total magnetic field is align in-plane and along
the z-axis:

H⃗ =

 0
0
Hz

 (17)

Eq. 15 is simplified as

∂Mx

∂t = −γ [My ·Hz −Mz ·Hdemag,y]
∂My

∂t = −γ [−Mx ·Hz]
∂Mz

∂t = −γ [Mx ·Hdemag,y]

(18)

Substitution of Eq. 14 for the demagnetization into
Eq. 18 gives

∂Mx

∂t = −γ [My ·Hz +Mz · 4πMy]
∂My

∂t = −γ [−Mx ·Hz]
∂Mz

∂t = −γ [−Mx · 4πMy]

(19)

II. OVERSIMPLIFIED CLASSICAL
DESCRIPTION BY KITTEL

A. Kittel’s approximate solution

To simplify the solution of the Landau–Lifshitz equa-
tion, Kittel introduced a rather rough approximation.
Remarkably, despite its simplicity, this approximation
produces results that are nearly identical to the exact
solution obtained without any approximations.
(Kittel’s approximation) : The oversimplified Kit-

tel’s approximation states that there is no modulation of
magnetization component along the easy axis

∂Mz

∂t
= 0 (20)
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The Kittel’s approximation literally means that the
precession angle does not vary in time, which fully con-
tradicts with the main feature of the Kittel’s effect.

However, the solution of the Landau- Lifshitz equation
becomes much simpler when Kittel’s approximation is
used. Differentiation of 1st Eq of Eqs. 19 and taking
into account that the external field is fixed ∂Hz

∂t = 0 and
the Kittel approximation (Eq.20) give

∂2Mx

∂t2
= −γ

[
Hz

∂My

∂t
+ 4πMz

∂My

∂t

]
(21)

or

∂2Mx

∂t2
= −γ [Hz + 4πMz]

∂My

∂t
(22)

Substitution of the 2nd Eq of Eqs. 19 into Eq. 22 gives

∂2Mx

∂t2
= −γ2 [Hz + 4πMz] ·Mx ·Hz (23)

The Eq. 24 can written as

∂2Mx

∂t2
= −ω2

L ·Mx (24)

where ωL is Larmor frequency calculated as

ωL = γ ·
√
Hz(Hz + 4πMz) (25)

Since the magnetic field is applied only along the easy
axis H = Hz and the precession angle is small Mz ≈ M ,
Eq. 25 becomes

ωL = γ ·
√
H · (H + 4πM) (26)

Eq. 26 is the final Kittel formula for the Larmor fre-
quency

It is important to note that the Kittel effect leads to
an increase of the Larmor frequency.

B. Oscillation of the precession angle within the
Kittel’s approximate solution

The solution of Eq. 24 gives the in-plane component of
the magnetization Mx, which perpendicular to the easy
axis (the z-axis) and which oscillates with the Larmor
frequency ωL, as

Mx = Mx0 · cos[ωL · t+ ϕ] (27)

where ϕ is the precession phase and Mx0 is the oscil-
lation amplitude

The oscillation of another perpendicular- to- easy- axis
componentsMy, which is perpendicular to the film plane,
is smaller, because of the effect of the demagnetization
field.
This component can be calculated from Eqs. 19. Sub-

stitution of Eq. 27 into 1st Eq. of Eqs. 19 gives

−Mx0 · ωL · sin[ωL · t+ ϕ] = −γMy [Hz + 4πMz] (28)

or

My =
Mx0 · ωL

γ [Hz + 4πMz]
sin[ωL · t+ ϕ] (29)

Taking into consideration Eq. 26, Eq 29 is simplified
as

My = Mx0

√
Hz(Hz + 4πMz)

Hz + 4πMz
sin[ωL · t+ ϕ] (30)

or

My = Mx0

√
Hz

Hz + 4πMz
sin[ωL · t+ ϕ] (31)

or

My = Mx0Ryx sin[ωL · t+ ϕ] (32)

where parameter Ryx =
My0

Mx0
is the ration of oscilla-

tion amplitudes along perpendicular-to-plane to in-plane
directions and which is calculated as

Ryx =

√
Hz

Hz + 4πMz
(33)

Parameter Ryx < 1, which is always less than 1, shows
the decrease of the precession angle when the magneti-
zation is in -direction of the interface normal
The total magnetization component perpendicular to

the easy axis M⊥is calculated from Eqs. 27, 31 as

M⊥ =
√
M2

x +M2
y =

= Mx0

√
cos2[ωL · t+ ϕ] + Hz

Hz+4πMz
sin2[ωL · t+ ϕ] =

= Mx0

√
1− 4πMz

Hz+4πMz
sin2[ωL · t+ ϕ]

(34)
The magnetization components Mx and My define the

maximum and minimum precession angles. The average
precision angle is established by a balance of the pumping
and damping torques.
The magnetization component along the easy axis Mz

is calculated as

M⊥ =
√

M2 −M2
⊥ (35)

Therefore, Mz is modulated during the magnetization
precession, which is in contradiction with the Kittel Ap-
proximation. Taking into account the modulation of Mz

leads to generation of 2nd and 3rd harmonics of ωL,
which are calculated in next section by solving LL equa-
tions without usage of the Kittel approximation.
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III. 2ND AND 3RD HARMONICS OF
PRECESSION. SOLUTION OF LANDAU-

LIFSHITZ EQUATION FOR KITTEL EFFECT
WITHOUT USAGE OF THE KITTEL

APPROXIMATION

A solution of the Landau–Lifshitz equation for the Kit-
tel effect does not require the use of Kittel’s original
rough approximation when higher-order harmonics are
included explicitly in the description of the precession.
The exact solution of the LL equations for the Kittel ef-
fect (Eq. 19) can be expressed as a linear combination of
the 1st, 2nd, and 3rd harmonics, as follows:

Mx = Mx,ω1 · ei·ωLt +Mx,ω3 · ei·3ωLt

My = My,ω1 · ei·ωLt +My,ω3 · ei·3ωLt

Mz = Mz0 +Mz,ω2 · ei·2ωLt
(36)

where Mx and My components have 1st and 3rd har-
monics, while Mz component has zero and 2nd harmon-
ics.

Substitution of Eq. 36 into 1st Eq. of Eqs 19 :

∂Mx

∂t
= −γ · [Hz + 4π ·Mz] ·My (37)

gives

Mx,ω1 · i · ωL · ei·ωLt +Mx,ω3 · i · 3ωL · ei·3ωLt =
= −γ

[
Hz + 4πMz0 + 4πMz,ω2 · ei·2ωLt

]
·

·
[
My,ω1 · ei·ωLt +My,ω3 · ei·3ωLt

] (38)

Comparison of coefficients in Eq. 38 oscillating as
ei·ωLt and as ei·3ωLt gives

i · ωL ·Mx,ω1 = −γ ·My,ω1 [Hz + 4πMz0]
i · 3ωL ·Mx,ω3 = −γ ·My,ω3 [Hz + 4πMz0]−
−γ ·My,ω1 · 4πMz,ω2

(39)

Substitution of Eq. 36 into 2nd Eq. of Eqs 19

∂My

∂t
= −γ [−Mx ·Hz] (40)

gives

My,ω1 · i · ωL · ei·ωLt +My,ω3 · i · 3ωL · ei·3ωLt =
= γ ·Hz ·

[
Mx,ω1 · ei·ωLt +Mx,ω3 · ei·3ωLt

] (41)

Comparison of coefficients in Eq. 41 oscillating as
ei·ωLt and as ei·3ωLt gives

i · ωL ·My,ω1 = γ ·Hz ·Mx,ω1

i · 3ωL ·My,ω3 = γ ·Mx,ω3 ·Hz
(42)

Substitution of Eq. 36 into 3nd Eq. of Eqs 19

∂Mz

∂t
= −γ [−Mx · 4πMy] (43)

gives

Mz,ω2 · i · 2ωL · ei·2ωLt = γ · 4π ·Mx,ω1 · ei·ωLtMy,ω1 · ei·ωLt

(44)
Comparison of coefficients in Eq. 44 oscillating as

ei·2ωLt gives

i · 2ωL ·Mz,ω2 = 4π · γ ·Mx,ω1 ·My,ω1 (45)

The 1st equation of Eqs 42 and 1st equation of Eqs
Eqs.39 makes a system of two equations

i · ωL ·Mx,ω1 = −γ ·My,ω1 [Hz + 4πMz0]
i · ωL ·My,ω1 = γ ·Hz ·Mx,ω1

(46)

solution of which gives Larmor frequency as

ωL = γ ·
√
Hz(Hz + 4πMz0) (47)

and the ellipticity of precession trajectory for precession
at 1st harmonic as

My,ω1

Mx,ω1
= −i ·Ryx = −i · γHz

ωL
Mx,ω1 (48)

where the ellipticity is calculated as

Ryx =

√
Hz

Hz + 4πMz0
(49)

It is the same result as described by Eq. 32
Substitution of Eq. 48 into Eq. 45 gives along-easy-

axis component osculating with double Larmor frequency
as

Mz,ω2 =
4π · γ
i · 2ωL

[
−i · γHz

ωL

]
M2

x,ω1 = −2π · γ2Hz

ω2
L

M2
x,ω1

(50)
Substitution of Eq. 47 into Eq. 50 gives the ratio

between components osculating with single and double
Larmor frequencies as

Mz,ω2 = −i
2π

Hz + 4πMz0
M2

x,ω1 (51)

Next, the magnitude and ellipticity of the 3rd har-
monic is calculated. The 2nd Eq. of Eqs 42 and Eq.
48 give

My,ω3 =
γHz

i · 3ωL
Mx,ω3 = −i

Ryx

3
Mx,ω3 (52)
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Eq. 52 the ellipticity of precession trajectory for pre-
cession at 3rd harmonic Ryx,ω3 as

Ryx,ω3 = i · My,ω3

Mx,ω3
=

Ryx

3
(53)

Ryx,ω3 is three times smaller than Ryx, meaning that
the ellipticity of trajectory for the 3rd harmonic is larger
than for the 1st harmonic.

Substitution of Eqs. 48, 51 and 52 into 2nd Eq of Eqs.
39:

i · 3ωL ·Mx,ω3 = −γ ·My,ω3 [Hz + 4πMz0]−
−γ ·My,ω1 · 4πMz,ω2

(54)

gives

i · 3ωL ·Mx,ω3 = −γ
[
−i

Ryx

3 Mx,ω3

]
[Hz + 4πMz0]−

−γ4π [−i ·Ryx ·Mx,ω1]
[
−i 2π

Hz+4πMz0
M2

x,ω1

]
(55)

Dividing both sides by γ simplifies Eq. 55 to:

Mx,ω3

[
i · 3ωL

γ − i
Ryx

3 [Hz + 4πMz0]
]
=

= M3
x,ω14πRyx

2π
Hz+4πMz0

(56)

Dividing both sides by Ryx and using Eq. 47 simplify
Eq. 56 to:

i ·Mx,ω3

[
3

√
Hz(Hz+4πMz0)

Ryx
− Hz+4πMz0

3

]
=

= M3
x,ω1

8π2

Hz+4πMz0

(57)

Substitution of Ryx from Eq. 49 gives:

i ·Mx,ω3 [Hz + 4πMz0]
8
3 = M3

x,ω1
8π2

Hz+4πMz0
(58)

So the ratio between components osculating with single
and triple Larmor frequencies is calculated as

Mx,ω3 = −i
π2

3

M3
x,ω1

[Hz + 4πMz0]
2 (59)

IV. ACCOUNTING THE SPIN- ORBIT
INTERACTION AND REALISTIC

DEMAGNETIZATION FIELD

In the previous sections, the Kittel effect was evalu-
ated under the assumption of an ideally smooth, pla-
nar interface with no interfacial spin–orbit interaction.
This assumption is a substantial oversimplification. Such
an ideal interface does not exist in real materials. In
practice, surfaces are never perfectly flat, and interfacial
spin–orbit interaction is often significant.

A. spin-orbit interaction and imperfection of
interface included into Landau-Lifshitz equations

In the “ideal interface” approximation, the demagne-
tizing fieldHdemag is assumed to be exactly equal in mag-
nitude and opposite in direction to the magnetic field
produced by the magnetization M itself (i.e., the field
generated by the spins ):

Hdemag,y = 4π ·My (60)

It is convenient to use unit system, in which the mag-
netization M and the magnetic field is measured in the
same unit. In this case the coefficient 4π is not required
in Eq. 60

Hdemag,y = My (61)

A realistic interface unavoidably has a roughness and
other imperfections. It result in a smaller demagnetiza-
tion field, which is described by a demagnetization coef-
ficient kdemag. The demagnetization field becomes

Hdemag,y = kdemag ·My (62)

where kdemag equals to one for the deal interface and is
smaller that one for a realistic interface.
The direction of the demagnetization field is perpendic-

ular to the interface and there is no in-plane component
of the demagnetization:

Hdemag,x = Hdemag,z = 0 (63)

Additionally, the electrons experience the magnetic
field of spin- orbit interaction. In the presence of the

bulk or interracial anisotropy, H⃗so can be described us-

ing the tensor k̂so as :

H⃗so = k̂so(H⃗ + M⃗ − H⃗demag) (64)

The y-axis is established as perpendicular to the plane,
while the x- and z- axes are set within the plane. In the
case of an amorphous nanomagnet, anisotropy in spin-
orbit interaction can occur only between the y- and x-

(z-) axes. Consequently, the tensor k̂so can be written as
follows:

k̂so =

kso,x 0 0
0 kso,y 0
0 0 kso,x

 (65)

The total magnetic field, which an electron experi-
ences, is the sum of an external, internal and demag-
netization fields
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H⃗total = H⃗ext + M⃗ − H⃗demag + H⃗so (66)

Substitution Eqs. into Eq. 66 gives

Htotal,y = Hext,y +My − kdemagMy+
+kso,y [Hext,y +My − kdemagMy]
Htotal,x = Hext,x +Mx + kso,x [Hext,x +Mx]
Htotal,z = Hext,z +Mz + kso,x [Hext,z +Mz]

(67)

or

Htotal,y = (1 + kso,y) [Hext,y +My − kdemagMy]
Htotal,x = (1 + kso,x) [Hext,x +Mx]
Htotal,z = (1 + kso,x) [Hext,z +Mz]

(68)

To simplify analysis, let us assume that the external
magnetic field is applied along the z-axis the total mag-
netic field is align in-plane and along the z-axis:

H⃗ext =

 0
0
Hz

 (69)

Then

Htotal,y = (1 + kso,y) [My − kdemagMy]
Htotal,x = (1 + kso,x)Mx

Htotal,z = (1 + kso,x) [Hz +Mz]
(70)

The Landau-Lifshitz (LL) equation describes the dy-
namic of the magnetization precession, induced by total
magnetic field H, which includes the internal and external
magnetic fields, and the demagnetization field:

∂M⃗

∂t
= −γM⃗ × H⃗total (71)

or

∂Mx

∂t = −γ [MyHtotal,z −MzHtotal,y]
∂My

∂t = −γ [MzHtotal,x −MxHtotal,z]
∂Mz

∂t = −γ [MxHtotal,y −MyHtotal,x]

(72)

or

− 1
γ

1
1+kso,x

∂Mx

∂t =

= [My(Hext,z +Mz)−MzHtotal,y]

− 1
γ

1
1+kso,x

∂My

∂t =

= [MzHtotal,x −Mx(Hext,z +Mz)]
− 1

γ
1

1+kso,x

∂Mz

∂t =

= [MxHtotal,y −MyHtotal,x]

(73)

∂Mx

∂t
∂My

∂t
∂Mz

∂t

 =

= −γ
1+kso,x

My(Hz +Mz)−Mz(1 + kso)(1− kdemag)My

MzMx −Mx(Hz +Mz)
Mx(1 + kso)(1− kdemag)My −MyMx


(74)

where effective coefficient kso of SO is defined as:

1 + kso =
1 + kso,y
1 + kso,x

(75)

Eq. 74 is simplified as

∂Mx

∂t
∂My

∂t
∂Mz

∂t

 =

= −γ
1+kso,x

MyHz −MyMz [(1 + kso)(1− kdemag)− 1]
−MxHz

MxMy [(1 + kso)(1− kdemag)− 1]


(76)

It is important to notice that Eq. 76 becomes exactly
the same as Eq. 19

∂Mx

∂t = −γ [My ·Hz +Mz · 4πMy]
∂My

∂t = −γ [−Mx ·Hz]
∂Mz

∂t = −γ [−Mx · 4πMy]

(77)

when parameters are replaced as

γ → γ
1+kso

4π → 1− (1 + kso)(1− kdemag)
(78)

In a film with the in-plane equilibrium magnetization,
the anisotropy field H0

ani in absence of any external mag-
netic field is calculated as

H0
ani =

2M

1 + kso
[1− (1 + kso)(1− kdemag)] (79)

Substitution of of Eq. 79 into the 2nd Eq of Eqs. 78
gives

γ → γ
1+kso

4π → H0
ani(1 + kso)

2 ·M
(80)

B. Calculation of Larmor frequency

Substitution of Eq. 80 into Kittel formula for the Lar-
mor frequency Eq. 26 gives

ωL =
γ

1 + kso
·
√
Hz(Hz +H0

ani

(1 + kso)

2
) (81)

In absence of the interfacial spin- orbit interaction or
in the case of isotropic spin-orbit interaction (kso,x =
kso,y = kso,z), which leads to kso = 0, the anisotropy
field is calculated as

H0
ani = 2M · kdemag (82)
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and the Larmor frequency Eq. 81 becomes

ωL = γ ·
√

Hz(Hz +M · kdemag) (83)

In case of an ideally smooth interface (kdemag = 1),
Eq. 83 is simplified to the classical Kittel formula for the
Larmor frequency:

ωL = γ ·
√
Hz(Hz +M) (84)

C. ellipticity of precession trajectory

Substitution of Eq. 80 into Eq. 49 gives
the ellipticity of precession trajectory Ryx as

Ryx =

√
H

H +H0
ani

(1+kso)
2

(85)

In absence of the interfacial spin- orbit interaction
kso = 0, from Eq. 82 the ellipticity is calculated as

Ryx =

√
H

H +M · kdemag
(86)

D. 2nd and 3rd harmonics of precession

Substitution of Eq. 80 into Eq. 51 gives the ratio
between components osculating with single and double
Larmor frequencies as

Mz,ω2 = −i
H0

ani(1 + kso)

4 ·M
1

H +
H0

ani(1 + kso)

2

M2
x,ω1

(87)

Simplification of Eq. 87 gives

Mz,ω2 = −i
M2

x,ω1

2M

1

1 +
H

H0
ani

2

1 + kso

(88)

In absence of the interfacial spin- orbit interaction
kso = 0, from Eq. 82 the ratio between components
osculating with single and double Larmor frequencies is
calculated as

Mz,ω2 =
−i

2M

1

1 +
H

M · kdemag

M2
x,ω1 =

= −i
0.5

M + H
kdemag

M2
x,ω1

(89)

Substitution of Eq. 80 into Eq. 59 gives the ratio be-
tween components osculating with single and triple Lar-
mor frequencies is calculated as

Mx,ω3 =
−i

3 · 16

[
H0

ani(1 + kso)

2 ·M

]2 M3
x,ω1[

H +
H0

ani(1 + kso)

2

]2
(90)

In absence of the interfacial spin- orbit interaction
kso = 0, from Eq. 90 the ratio between components
osculating with single and triple Larmor frequencies is
calculated as

Mx,ω3 = −i
M3

x,ω1

48 ·M2

1[
1 +

H

H0
ani

2

1 + kso

]2 (91)


