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This is an FMR (Ferromagnetic Resonance) calculation, which describes the magnetization dy-
namics of a ferromagnetic material under illumination by an electromagnetic wave. The analysis is
for the case where the magnetic field component of the wave rotates in the same direction as the
natural magnetization precession—representing the most effective polarization for FMR excitation.
The main part of this work was completed on January 15, 2025.

I. CONDITIONS, ASSUMPTIONS, AXIS
DIRECTIONS

(condition 1):The equilibrium magnetization is per-
pendicular to the plane (the z- direction). It is the case of
a relatively thin ferromagnetic field, when the interfacial
anisotropy overcomes the demagnetization field.

(condition 2): Oscillating Magnetic field is circular
polarized, and its polarization is rotating in the same
direction as the magnetization rotation in the xy-plane,
which is perpendicular to the easy axis.

(condition 3): The bias magnetic field Hz and, there-
fore, the Larmor frequency ωL do not depend either on
precession angle θ or precession phase φ. It means that
the variation of precession angle is small and there is no
Kittel effect.

(approximation 1): At first, the calculations are
done ignoring the precession damping. Later, the pre-
cession damping is included as the damping torque.

FIG. 1. Precession geometry. The equilibrium magnetization
is perpendicular to the film (the z- direction). The external
magnetic field Hz is applied along the easy axis (the z- direc-
tion). The precession is clockwise direction with respect to
the external magnetic field (when to look from back to tip of
the arrow)

II. FINAL RESULTS

During the magnetization precession around the z-axis,
components of the magnetization are described as:

mx(t) = M · sin(θ(t)) · cos(ωLt+ φ(t))
my(t) = M · sin(θ(t)) · sin(ωLt+ φ(t))
mz(t) = M · cos(θ(t))

(1)

where mx,my,mz are component of magnetization M .
The easy magnetic axis, and thus the precession axis, is
aligned along the z-axis. The precession angle, θ, varies
with time. In the case of ferromagnetic resonance (FMR),
θ oscillates periodically around a relatively small average
precession angle. In the case of parametric reversal, the
average precession angle increases continuously until full
magnetization reversal occurs. The precession frequency,
ωL, also varies with time. Typically, ωL is larger for
smaller precession angles θ and decreases as θ increases.
The precession phase, φ, varies with time. When φ is in
phase with the oscillations of the magnetic field of the
pumping electromagnetic wave, the precession angle θ
increases. When φ is out of phase, the precession angle
θ decreases.
The magnetization precession is mathematically de-

scribed by a solution to the Landau-Lifshitz equation
for a system driven by an electromagnetic field of fre-
quency ω. The temporal dynamics are governed by a set
of two coupled differential equations. The first equation
describes the torque-induced evolution of the precession
angle θ, while the second governs the evolution of the pre-
cession phase ϕ. These equations, which must be solved
simultaneously, are:

∂θ
∂t = ΩMW · sin[(ω − ωL)t− φ]
∂φ
∂t = −ΩMW

1
tan(θ) cos[(ω − ωL)t− φ]

(2)

where ωL = γHz is the Larmor frequency, ΩMW =
γHMW is the precession pumping strength and HMW

is the magnetic component of the pumping microwave
electromagnetic field;
It is important to note that the solution (2) was ob-

tained from Landau- Lifshitz equation without usage of
any approximations. Set of differential equations Eqs. 2
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FIG. 2. Geometry of illuminating microwave field. The plane
of polarization rotation (the xy-plane) is the same as the plane
of the spin precession. The polarization rotation (clockwise
direction with respect to the external magnetic field Hz) is
the same as direction of the spin precession.

is non-linear and should be solved either numerically or
using some approximations.

III. SOLVING LL EQUATIONS. NO
APPROXIMATIONS IN USE

Ferromagnetic resonance (FMR) is the process
whereby magnetization precession is driven in a ferro-
magnetic material by the application of an electromag-
netic field, most commonly in the radio frequency (RF)
band from 2 to 20 GHz. Only the magnetic component
of the electromagnetic field interacts with the magneti-
zation.

The magnetization precession occurs around a bias
perpendicular magnetic field Hz = Hext + Hint, where
Hint is the internal unchanged magnetic field and Hext

is the bias perpendicular magnetic field.

The precession pumping is generated by the oscillating
magnetic field HMW of the electromagnetic field, which
illuminates the ferromagnet.

The Landau-Lifshitz (LL) equation describes the dy-
namic of the nanomagnet magnetization m⃗ as:

∂m⃗

∂t
= −γm⃗× (H⃗ + H⃗MW ) (3)

where γ is the electron gyromagnetic ratio, H⃗ is un-

changed bias magnetic field and H⃗MW is oscillating mag-
netic field with the frequency ω (the magnetic component
of the pumping microwave field), ω is the frequency of the
microwave field, the microwave field is circular- polarized
with magnetic field circulary rotating in the same direc-
tion as the spin precession (See Fig. 2) :

H⃗ =

Hx

Hy

Hz

 =

 0
0
Hz

 (4)

H⃗MW = HMW

cos(ωt)
sin(ωt)

0

 (5)

m⃗ =

mx

my

mz

 (6)

Then

m⃗× H⃗ = Hz

 my

−mx

0

 (7)

and

m⃗×H⃗MW = HMW

sin(ωt)
−mz

0
mx

+ cos(ωt)

 0
mz

−my


(8)

The scalar form of the Eq. 3 is

∂mx

∂t = −ωLmy +ΩMW ·mz sin(ωt)
∂my

∂t = ωLmx − ΩMW ·mz cos(ωt)
∂mz

∂t = ΩMW [my cos(ωt)−mxsin(ωt)]

(9)

where the Larmor frequency ωL = γHz, which is the
precession frequency, and ΩMW = γHMW is the pre-
cession pumping strength of the pumping microwave.
It should be noted that ωL is substantially larger than
ΩMW . If ωL is typically around 10 GHz, ΩMW is much
smaller of about 1 MHz and less.
Introduction of new unknowns

m+ = mx + i ·my m− = mx − i ·my

mx = m++m−
2 my = m+−m−

2i

(10)

and addition/ subtraction of the 1st and 2nd equations
of Eqs. (9) give

∂m+

∂t = iωLm+ +ΩMW ·mz [sin(ωt)− i · cos(ωt)]
∂m−
∂t = −iωLm− +ΩMW ·mz [sin(ωt) + i · cos(ωt)]

∂mz

∂t = ΩMW

[
m+−m−

2i cos(ωt)− m++m−
2 sin(ωt)

]
(11)

or

∂m+

∂t = iωLm+ − i · ΩMW ·mze
i·ωt

∂m−
∂t = −iωLm− + i · ΩMW ·mze

−i·ωt

∂mz

∂t = ΩMW

2i

[
m+e

−i·ωt −m−e
+i·ωt

] (12)
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FIG. 3. Precession geometry. θ is the precession angle of
magnetization M with respect to the easy axis (the z- axis).
The ϕ is the precession phase with respect to the x- axis.

The solution of Eq. 12 can be found in form of the
magnetization precession, which can be described as

mx(t) = M · sin(θ(t)) · cos(ϕ(t))
my(t) = M · sin(θ(t)) · sin(ϕ(t))
mz(t) = M · cos(θ(t))

(13)

where θ(t) and ϕ(t) are new time- dependent unknowns

and M =
√
m2

x +m2
y +m2

z is the magnetization, which

is time-independent: ∂M
∂t = 0 (See Fig. 3).

Summing and substituting 1st and 2nd Eqs. of Eqs.
13 gives:

m+ (t) = M · sin (θ (t)) · eiϕ(t)
m− (t) = M · sin (θ (t)) · e−iϕ(t)

mz (t) = M · cos (θ (t))
(14)

Differentiating Eqs. 14 gives

∂m+

∂t = M · eiϕ
(
cos(θ)∂θ∂t + i∂ϕ∂t sin(θ)

)
∂m−
∂t = M · e−iϕ

(
cos(θ)∂θ∂t − i∂ϕ∂t sin(θ)

)
∂mz

∂t = M ·
(
− sin(θ)∂θ∂t

) (15)

Substitution of Eqs. 15, 13 into Eq. 12 and dividing
over M gives

[
cos(θ)∂θ∂t + i∂ϕ∂t sin(θ)

]
eiϕ =

= iωL sin(θ)eiϕ − i · ΩMW · cos(θ)e+i·ωt[
cos(θ)∂θ∂t − i∂ϕ∂t sin(θ)

]
e−iϕ =

= −iωL sin(θ)e−iϕ + i · ΩMW · cos(θ)e−i·ωt

− sin(θ)∂θ∂t = ΩMW

2i sin(θ)
[
e+i·ϕe−i·ωt − e−i·ϕe+i·ωt

]
(16)

dividing the both sides of 1st equation over cos(θ)eiϕ

and both sides of the 2nd equation over cos(θ)e−iϕ and
3rd equation over sin(θ) give

∂θ
∂t + i∂ϕ∂t tan(θ) = iωL tan(θ)− i · ΩMW · ei·(ωt−ϕ)

∂θ
∂t − i∂ϕ∂t tan(θ) = −iωL tan(θ) + i · ΩMW · ei·(−ωt+ϕ)

∂θ
∂t = ΩMW · sin(ωt− ϕ)

(17)
It is important to note that only two of three equations

of Eqs.(17) are independent. It is because summing the
1st and 2nd equations gives the 3rd equation. The 3rd
equation and subtraction of the 1st and 2nd equations
gives the following system of two differential equations:

i∂ϕ∂t tan(θ) =
= iωL tan(θ)− i · 0.5 · ΩMW

[
e+i·(ωt−ϕ) + e−i·(ωt−ϕ)

]
∂θ
∂t = ΩMW · sin(ωt− ϕ)

(18)
Dividing the 1st equation over i · tan(θ) gives the solu-

tion of LL equations as

∂ϕ
∂t = ωL − ΩMW

1
tan(θ) cos(ωt− ϕ)

∂θ
∂t = ΩMW · sin(ωt− ϕ)

(19)

It is important to note that the solution (19) was ob-
tained from LL equations (3) without usage of any ap-
proximations
In the absence of the oscillating magnetic fieldHMW =

0 (absence of the microwave pump), which leads to and
ΩMW = 0. Eq.19 becomes

∂ϕ
∂t = ωL
∂θ
∂t = 0

(20)

which has a solution

ϕ = ωLt+ ϕ0

θ = θ0
(21)

It describes the magnetization precession at a constant
angle θ0 at the Larmor frequency ωL

Introduction of new independents as

ϕ = ωLt+ φ(t)
θ = θ0 + θ1(t)

(22)

simplifies Eq. 19 as

∂φ
∂t = −ΩMW

1
tan(θ0+θ1(t))

cos[(ω − ωL)t− φ(t)]
∂θ1
∂t = ΩMW · sin[(ω − ωL)t− φ(t)]

(23)

This is the final solution. The 2nd Eq. describes the
torque inserted by the microwave on spin precession. The
torque forces the precession angle θ either to increase or
to decrease. The 1st equation describes the modulation
of the precession phase.
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Set of differential equations Eqs. 23 is non-linear and
should be solved either numerically or using some ap-
proximations.

It is important to note that the solution (23) was ob-
tained from LL equations (3) without usage of any ap-
proximations

A. Symmetry of solution

Since the solution in Eq. 23 was derived directly from
the Landau–Lifshitz equation (Eq. 3) without any ap-
proximations, the set of two differential equations in Eq.
23 is fully equivalent to the original set of three differen-
tial equations in Eq. 3.

Symmetry 1: The solution is periodic with pe-
riod 2π

ω−ωL

Since replacing the time variable as t → t+ 2π
ω−ωL

leaves
Eq. 23 unchanged, any solution of Eq. 23 is therefore
periodic with period 2π

ω−ωL

Symmetry 2: The torque in the first half-period
is equal in magnitude but opposite in sign to the
torque in the second half-period. Consequently,
the net torque over one full period is zero.

Since the following replacement

t → −t
φ → −φ
∂θ

∂t
→ −∂θ

∂t
θ → θ

(24)

leaves Eq. 23 unchanged, The torque ∂θ
∂t in the first

half-period is equal in magnitude but opposite in sign
to the torque in the second half-period. Consequently,
the precession angle returns to its initial value after each
period.

B. Average and maximum torque and deviation of
precession angle.

Beating period:

Tbeating =
2π

ω − ωL
=

1

f − fL
(25)

where f is frequency of electromagnetic field and fL is
the Larmor frequency.

The beating period is the time interval over which the
torque reverses its polarity and then returns to its orig-
inal value. During the first half of the period, energy
is transferred from the electromagnetic wave to the spin
precession, while during the second half, the energy is
transferred back from the spin precession to the electro-
magnetic wave.

It should be noted that the Larmor frequency decreases
as the precession angle increases. For example, when the

precession angle is 90 degrees, the energies of the spin-
up and spin-down states are identical, and the Larmor
frequency vanishes. Consequently, the beating period
shortens as the precession angle grows. The minimum
beating period is reached at a precession angle of, where
it becomes:

Tbeating,min =
1

f
(26)

Maximum torque: From the second equation of Eq.
23 the maximum torque within one beating period is
given as:

[
∂θ

∂t

]
maximum

= ΩMW (27)

Average torque: In the absence of precession or
phase damping, the net torque averaged over one full
beating period is zero. The positive torque during the
first half of the period is exactly canceled by the negative
torque during the second half.
When there is precession damping, the average torque

is positive and equal to the average damping torque.
Average positive torque: in 1st half of beating pe-

riod

[
∂θ

∂t

]
pos,aver

= 2
ΩMW

Tbeating

∫ Tbeating/2

0

sin[(ω − ωL)t− φ(t)]·dt

(28)
where the initial phase is chosen as φ(t = 0) = 0
Notably, the average positive torque increases with a

reduction in the beating period. This reduction occurs
when the electromagnetic wave’s frequency approaches
the Larmor frequency.
Maximum precession angle:
The precession reaches its maximum precession angle

θmax at the end of the first half of the beating period,
precisely when the torque changes from positive to neg-
ative.

θmax = ΩMW

∫ Tbeating

0

sin[(ω − ωL)t− φ(t)] · dt (29)

assuming that the minimum precession angle is zero and
φ(t = 0) = 0.
Magnetization reversal:
A precession angle greater than 90° causes the equi-

librium magnetization to invert. As a result, when the
driving electromagnetic field is turned off, the magneti-
zation relaxes not back to its initial alignment, but to
the opposite direction. The minimum intensity of elec-
tromagnetic field required for magnetization reversal can
be found from ΩMW , which itself can be calculated from
the following equation::

π

2
= ΩMW

∫ Tbeating

0

sin[(ω − ωL)t− φ(t)] · dt (30)
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Since both Tbeating and ωL depend on precession angle,
Eq. 30 should be calculated numerically.

Energy of the electromagnetic wave absorbed
to sustain magnetization precession:

In the case of the stable magnetization precession, the
energy loss due to the precession damping is compensated
by energy absorbed from the pumping electromagnetic
wave.

The magnetization precession occurs around a bias
perpendicular magnetic field Hz = Hext + Hint, where
Hint is the internal unchanged magnetic field and Hext

is the bias perpendicular magnetic field. In this case the
magnetic energy is calculated as:

E = H⃗z · M⃗ = (Hext +Hint) ·M · cos(θ) (31)

The change of energy in time is calculated as

∂E

∂t
= −Hz ·M · sin(θ)∂θ

∂t
+M · cos(θ)Hint

∂t
(32)

Assuming that the internal field is independent of the
precession angle, Eq. 32 is simplified as

∂E

∂t
= −Hz ·M · sin(θ)∂θ

∂t
(33)

Substitution of the torque of the pumping electromag-
netic field the 2nd Eq of Eqs. 23 into Eq. 33 gives the
average energy per the beating period, which is asorbed
from the electromagnetic field, as

Eabsorbed =

Hz · ΩMW

∫ Tbeating

0
sin(θ(t)) · sin[(ω − ωL)t− φ(t)] · dt

(34)

IV. CALCULATION OF TORQUE USING
APPROXIMATIONS

The first approximation is relatively simple and
straightforward. It assumes that a certain magnetiza-
tion precession already exists, and that variations in the
precession angle occur only as small oscillations around
this average precession angle. In this approximation, the
change in the precession angle is considered much smaller
than the average precession angle itself.

θ0 >> θ1 (35)

Then, the dynamic equation (23) are simplified to

∂φ
∂t = −ΩMW

1
tan(θ0)

cos[(ω − ωL)t− φ]
∂θ1
∂t = ΩMW · sin[(ω − ωL)t− φ]

(36)

This approximation is not strict and well fits to the
conditions of realistic precession

A. The zero approximation : Ignoring the change
of the precession phase

This approximation assumes that the phase of mag-
netization precession remains unchanged under the in-
fluence of pumping. Due to a phase mismatch between
the oscillations of the electromagnetic wave and the mag-
netization precession, the torque alternates periodically
between positive and negative values. As a result, the
pumping and damping effects largely cancel each other
out, leading to no net pumping. Consequently, the pre-
cession angle oscillates around a constant average value.
Ignoring the phase change in the 2nd equation of Eqs.

36 and choosing a constant phase as φ = 0 gives the
torque as

∂θ

∂t
= ΩMW · sin[(ω − ωL)t] (37)

The torque is oscillating from maximum negative value
of −ΩMW to maximum positive value +ΩMW within
time period 2π

ω−ωL
. Torque averaged over the period

equals to zero. Therefore, in average the magnetization
does not experience any torque. Within the period, the
torque reverses its polarity.
Average positive torque can be calculated as

[
∂θ

∂t

]
pos,aver

= 2 · ΩMW (38)

The solution of Eq. (37), gives the oscillating preces-
sion angle around θ0 as

θ = θ0 −
ΩMW

ω − ωL
cos[(ω − ωL)t] (39)

Often the precession damping makes the minimum pre-
cession angle to be zero, then the variation of the preces-
sion angle is described as

θ =
ΩMW

ω − ωL
(1− cos[(ω − ωL)t]) (40)

The precession angle θ is oscillating from zero to maxi-
mum positive value 2ΩMW

ω−ωL
. The amplitude of the change

of the precession angle becomes larger when the fre-
quency of electromagnetic wave ω approaches the Larmor
frequency ωL.
The condition of the magnetization reversal Eq. 30

becomes:

2ΩMW

ω − ωL
>

π

2
(41)

While this simplified approximation allows for in-
finitely large variations in the precession angle amplitude,
when ω is close to ωL,—an unrealistic outcome. In a
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FIG. 4. Approximation 0. (a) Phase difference between pump
and precession. (b) precession pumping torque. It has equal
positives and negative parts, resulting in no average torque (c)
Precession angle, which oscillates around an average angle of 2
degrees. The pumping frequency is 4 MHz above the Larmor
frequency ω − ωL = 4MHz.

physically accurate scenario, however, the amplitude of
the precession angle variation is constrained and remains
relatively small (see below).

Substitution of Eqs. 37 and 40 into Eq. 33 gives change
of precession energy as:

∂E

∂t
= −Hz ·M · ΩMW · sin[(ω − ωL)t]·

·sin
[
ΩMW

ω−ωL
(1− cos[(ω − ωL)t])

] (42)

Figure 4 shows the calculated magnetization precession
under the zero-order approximation, for the case where
the pumping frequency is 4 MHz below the Larmor fre-
quency. The amplitude of the oscillating magnetic com-
ponent of the electromagnetic wave is 5.6 mGauss.

In this approximation, the phase of the precession

is assumed constant over time. Due to the frequency
mismatch between the pumping signal and the preces-
sion, the pumping torque oscillates symmetrically be-
tween positive and negative values, resulting in zero net
average torque. As a result, the precession angle oscil-
lates around the initial value of 2 degrees without grow-
ing. From 0 to 125 ns, when the torque is positive, the
precession angle increases from 1.77 to 2.22 degrees. In
the second half of the period when the negative the pre-
cession angle decreases back to 1.77 degrees.

B. The first approximation : There is a modulation
of precession phase, but such modulation is

simplified

This approximation is softer than the zero approxima-
tion of previous chapter. It allows the variation of phase
φ, but this variation is smaller than the phase variation
(ω−ωL)t due to the frequency beating. The approxima-
tion is described as:

|(ω − ωL)t| >> |φ(t)| (43)

The approximation is valid either when the pumping
frequency ω is relatively far from the Larmor frequency
ωL or when the calculated time interval t is short or when
the pumping strength ΩMW is small (See below Eq.(47)).
The approximation (43) simplifies the 1st equation of

Eqs. 36

∂φ

∂t
= −ΩMW

1

tan(θ0)
cos[(ω − ωL)t− φ(t)] (44)

to

∂φ

∂t
= −ΩMW

1

tan(θ0)
cos[(ω − ωL)t− φ0] (45)

where φ0 is a time independent constant.
Solution of the equation (50), gives the oscillating

phase as

φ(t) = − ΩMW

ω − ωL

1

tan(θ0)
sin[(ω − ωL)t− φ0] (46)

Substitution of Eq.(46) into (43) gives more concrete
limitation of validity of the 1st approximation as

|(ω − ωL)t| >>

∣∣∣∣ ΩMW

ω − ωL

1

tan(θ0)
sin[(ω − ωL)t− φ0]

∣∣∣∣
(47)

Substitution of Eq.(46) into the 2nd equation of Eqs.
36 gives the torque of the 1st approximation as

∂θ1
∂t = ΩMW ·
· sin

{
(ω − ωL)t+

ΩMW

ω−ωL

1
tan(θ0)

sin[(ω − ωL)t]
} (48)
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Several important symmetry properties of the torque
Eq. (48) of the 1st approximation should be noted:

(property 1): The torque is still oscillating from max-
imum negative value of −ΩMW to maximum positive
value +ΩMW within time period 2π

ω−ωL

It is because the transformation t → t+ 2π
ω−ωL

does not
change the Eq. 48 for the torque

(property 2): Torque averaged over the period still
equals to zero.

It is because the torque is still asymmetric for time
reversal t → −t

∂θ1
∂t

(t) = −∂θ1
∂t

(−t) (49)

Over the period the positive torque exactly equals to
the negative torque and in the average there is no torque

(property 3): The precession phase φ is oscillating
with the same period 2π

ω−ωL
(See Eq. 46). The largest

variation of the phase is ± ΩMW

ω−ωL

1
tan(θ0)

. The variation

becomes larger, when microwave intensity is larger, when
microwave frequency ω is closer to the Larmor frequency
ωL and when the precession angle θ becomes smaller.

C. The second approximation; more complex
dynamic for the precession phase φ

.
This approximation is softer than the 1st approxima-

tion of previous chapter. It accounts the variation of
phase φ in the right of the 1st differential equation of
Eqs.(36):

∂φ

∂t
= −ΩMW

1

tan(θ0)
cos[(ω − ωL)t− φ0 − φ(t)] (50)

where φ0 is a time independent constant and φ(t = 0) =
0

The Eq.(50) can be simplified using the following
trigonometric relation:

cos[(ω − ωL)t− φ(t)] =
= cos[(ω − ωL)t] cos[φ(t)] + sin[(ω − ωL)t] sin[φ(t)]

(51)
The approximation is described as:
Note: This approximation is valid at least within shout

time interval.
It is valid over the whole period of the torque oscilla-

tion when

ΩMW

ω − ωL

1

tan(θ0)
<< 1 (52)

Therefore it is valid over whole period when when mi-
crowave intensity is larger, when microwave frequency ω

is closer to the Larmor frequency ωL and when the pre-
cession angle θ becomes smaller.
and when

sin[φ(t)] << 1 (53)

the 1st equation of Eqs. (36)

∂φ

∂t
= −ΩMW

1

tan(θ0)
cos[(ω − ωL)t− φ(t)] (54)

is simplified to

∂φ

∂t
= −ΩMW

1

tan(θ0)
cos[(ω − ωL)t] cos[φ(t)] (55)

The differential equation 55 can be solved as

∂φ

cos(φ)
= −ΩMW

∂t

tan(θ0)
cos[(ω − ωL)t] (56)

Integration gives

ln
[
ln[cos(φ/2)−sin(φ/2)]
cos(φ/2)−sin(φ/2)

]
=

= − ΩMW

ω−ωL

1
tan(θ0)

sin[(ω − ωL)t]
(57)

or

ln[cos(φ/2)−sin(φ/2)]
cos(φ/2)−sin(φ/2)

= e
−ΩMW

ω−ωL

1
tan(θ0)

sin[(ω−ωL)t]
(58)

V. INTRODUCTION OF PRECESSION
DAMPING

In absence of precession damping

VI. CALCULATION OF THE MAGNETIC
FIELD COMPONENT OF AN
ELECTROMAGNETIC WAVE

The relationship between the electric and magnetic
fields in a plane wave in vacuum is:

H =
E

Z0
(59)

where Z0 ≊ 377Ohm is is the impedance of free space.
For example, when an EM wave has an electric field

amplitude E = 1 V/mm, H ≈ 2.65A/m ≈ 0.033Gauss
For another example, when an EM wave has an electric

field amplitude E = 1V/nm (e.g. 1V is applied to a MgO
tunnel junction), H ≈ 2.65MA/m ≈ 33.3 kGauss
In the case of conventional impedance of 50 Ohm, the

magnetic field of the microwave is calculated as
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H(A/m) =
E(V/m)

50Ohm
(60)

The unit conversion is

B(Gauss) = µ0 ·H = 4π · 10−3 ·H(A/m) (61)

or

B(Gauss) = 0.0125 ·H(A/m) (62)


