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Classical damping torque as it is described in Landau–Lifshitz equation can be 

expressed as 

 1T M r M       
  

 

where  is the precession damping constant, which is assumed to be a constant; r is any 

vector in space. The torque T turns magnetization towards vector r independently of an 

initial direction of the magnetization M. 

 

 

Note, for any realistic precession dumping both the precession damping constant  and 

the magnetization M depend on the precession angle  However, in the classical calculation 

they both are assumed to be constants. This assumption is used in the calculateions below. . 

 

First, let us rotate the coordinate system that the y-axis is along r vector. Then, 

 2T M y M       
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Next let us rotate coordinate system in the xz plane, so Mz=0  

Then, the magnetization has x and y components as 
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The torque of Eq(2) is simplified as 
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The dynamic equation for the magnetization precession damping can be written as 
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or explicitly 
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The solution of the 3rd equation of Eq.(4a) is Mz=0, since Mz=0 at t=0. 

Instead Mx and My, new independences M and theta are introduced 
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Then 
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Substitution of Eq.(7) into 1st and 2nd Eqs. Of (4a) gives 
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Let us divide 1st Eq. on cos and 2nd Eq.on sin. Then 
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Summing up two eqs of (9) gives 
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The solution of Eq.(10) is 
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It means that the magnitude of the magnetization does not change in time as it is 

assumed in the classic mechanism of the precession damping. 

 

Substitution of Eq.(11) into  Eq.(9) gives 
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Two Eqs of (12) are exactly the same and can be written as 
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Since 
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The solution of Eq.(13) is  

  log tan / 2 M t      

or 
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